Oracle8i

SQLJ Developer’s Guide and Reference

Release 3 (8.1.7)

July 2000
Part No. A83723-01

ORACLE

SQLJ Developer’s Guide and Reference, Release 3 (8.1.7)

Part No. A83723-01

Copyright © 1996, 1999, 2000 Oracle Corporation. All rights reserved.
Primary Author: Brian Wright

Contributing Author: Ekkehard Rohwedder

Contributors: Brian Becker, Alan Thiesen, Lei Tang, Julie Basu, Pierre Dufour, Jerry Schwarz, Risto
Lankinen, Cheuk Chau, Vishu Krishnamurthy, Rafiul Ahad, Jack Melnick, Tim Smith, Thomas Pfaeffle,
Tom Portfolio, Ellen Barnes, Susan Kraft, Sheryl Maring, Angie Long

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and JDeveloper ™, Net8 ™, Oracle Objects ™, Oracle8 i™, Oracle8 ™,
Oracle7 ™, Oracle Lite ™, PL/SQL ™, Pro*C ™, SQL*Net®, and SQL*Plus® are trademarks or registered
trademarks of Oracle Corporation. All other company or product names mentioned are used for
identification purposes only and may be trademarks of their respective owners.

Contents

SENA US YOUT COMMENTES ...ttt ettt et st ee ettt s e ee et et et et e s e nes et rerenas XV
PRI AC ...ttt ettt ettt ettt et ettt et ettt e enas Xvii
{101 (T gL (Y0 I AN U o [1T o 1o < IR XVil
DOCUMENT SEIUCTUIE ...t ettt ettt e e e et e e e et e e e e saeee et b e s eaaeaeesbbe s et bessaseeessbbeesesteeesaes XViii
DOCUMENT CONVENTIONS ...ttt ettt e et e e e et e et e et e et e e sae e e e e eae s et e eessaeeseneeenensenas XX
REIATE DOCUMEBNES. ... eei ittt ettt ettt e et e e ettt e et e e s eaeee e ete e e sataeeetbeeeesebessssseesstbesesstbeesaste s srees XXi

1 Overview

[FakugoTo LU oA ToT a1 (o TR T I TSRS 1-2
2T LYol O o] g =] o £SO 1-2
Java and SQLIVEIrSUS PLZSQLooiiiiiiiiiiie ettt ettt ettt st enaeane s 1-3

Overview Of SQLJI COMPONENLESciiiitiriiiirietire ettt sttt st s eb e st eb et ebe st eb et eb et er e eree s 1-5
SQLJ Translator and SQLJ RUNTIME. ..ottt 1-5
31 N o o) 1SRRI 1-6

Overview of Oracle Extensions to the SQLJ Standardccccceviiiinninienie e 1-8

Basic Translation Steps and RUNtIMe ProCessing.........ccooeiiiiieiniine e e 1-9
TFANSIALION STEPS ..vee ittt e bbb s s s b bbb 1-9
Summary of Translator INput aNd OULPULccoeviiieice e 1-11
RUNTIME PrOCESSING ...ttt ettt ettt et e bbbt 1-14

Alternative DeploymMeENnt SCENAITOSccooiiiiiiieiie e e e e 1-16
RUNNING SQLI TN APPIELS ettt st e e e eea s 1-16
Introduction t0 SQLJ IN the SEIVEN ... s enea 1-19
Using SQLJ with an Oracle Lite Databasecccoceveiieineine e 1-20

Alternative DevelopmMENT SCENAITOSociiiiiiirieiire ettt eb et er e aenen 1-23

SQLI NLS SUPPIOIT ...ttt ettt en et e 1-23
SQLJ in JDeveloper and Other IDEScccooiiiiiiiiie ettt e 1-23
WiNAOWS CONSTAETALIONSeuiiiiiiirieiie ettt s s e 1-24

Getting Started

ASSUMPLIONS AN REGUITEMENTS........cuiiiiiiiitiiet ittt sttt st eb e e eb et eb e eb e er e beb e ben e 2-2
Assumptions About YOUr ENVIFONMENT ..ot s 2-2
Requirements for Using Oracle SQLU ...t e 2-2
SUPPOITEA IDK VEISIONS ...ttt ettt ettt ettt sttt enene 2-4
JSEIVEr CONTIGUIATIONeitie ittt ettt e e e 2-4

Checking the Installation and ConfigUIration ... 2-6
Check for Installed Directories and FileS ..o 2-6
Set the PATH and CLASSPATH ..ot e 2-6
Verify Installation of SQIjutl Packagecocooiriiiiii s 2-8

TESTING TNE SETUP ...ttt ettt h bbb bbbt b et eb et b et eb et eb et b ene s 2-9
Set Up the RUNTIME CONNECTIONoviviiiiiiieiiie ettt 2-9
Create a Table to Verify the Database..........cccociriiiiiiciee s 2-10
VErifY the JIDBC DIIVEL ...ttt s bbb 2-11
Verify the SQLJ Translator and RUNTIMEccoiiiiiiiieieie e 2-11
Verify the SQLJ Translator Connection to the Database..........ccccocovveiiiiinie s 2-12

Basic Language Features

Overview 0f SQLJ DECIAratioNSccoii ittt ettt st s e en e e 3-2
Rules for SQLJ DeCIarationsccoveueiiiiiie ettt et ee ettt s e s e s neeneenen 3-2
1terator DECIAIrAtIONSoiiee ettt s et en e e 3-3
Connection ContexXt DECIArationsS..........c.cueiiiiiee it e enee s 3-4
Declaration IMPLEMENTS CIAUSEccoiiiiiiieieee ettt s 3-5
Declaration WITH ClaUSE.......oiiiiieiie ettt et ettt s se e ben e e e en s s 3-6

Overview of SQLJ Executable StatemMentsS oo e 3-9
Rules for SQLJ Executable State@mMENtsS.........c.ooviiiiiiriiee ettt s eeea 3-9
SQL CHAUSES. ...ttt et ettt ettt sttt sttt en e see st st et et et ebe et e saeseen e seeseenten e st e en et ee e e neees 3-9
Specifying Connection Context Instances and Execution Context Instances 3-11
Executable Statement EXamMPIESc.ciiiiieiriieie ettt st s 3-12
PL/SQL Blocks in Executable StatemMENTS...........ccuiiviciiiii et s 3-13

Java Host Expressions, Context Expressions, and Result EXPressions..........cocvvvevnennens 3-15

OVeErview Of HOSt EXPIESSIONScvieiiiieiiietirie ettt sttt beb e ben e snen e 3-15
BasiC HOSt EXPreSSION SYNTAXccioieiiiiriiieiie ettt ettt ies et eneesesnesnesneneenens 3-16
EXamples Of HOSE EXPIESSIONS.......c.ciiiiiiriieiie ettt ettt st et en e sre e nee s 3-18
Overview of Result Expressions and Context EXPressions..........ccocoecevvveeeieeieeeiecniene s 3-20
Evaluation of Java EXpressions at RUNTIME ..o e 3-20
Examples of Evaluation of Java Expressions at RUNTIME ... 3-22
Restrictions 0N HOSE EXPIESSIONScovcuiiiciiiieiiiietisietes ettt s 3-31
Single-Row Query Results—SELECT INTO Statementscccooevereineeineinecineeeseeesieienas 3-32
Examples of SELECT INTO StatemMeNtS.......ccooioiiiiiiiieie et enea 3-33
Examples with Host EXpressions in SELECT-LISE.......cocciiiiiie e 3-33
Multi-Row Query ResUlts—SQLJ IEIAtOrScccooiiiiiiriiiiee sttt s e e e 3-35
=T o1 (0] O] g ToT=T o] OO PRURRPR 3-35
General Steps iN USING @N TTEFAtOrcocoiiiiiieie it 3-38
Named Iterators versus Positional Iterators.. ... e 3-39
USING NAMEA TEEIALOTS ..ottt ettt st se e e s e ettt e sre et snea 3-40
USING POSITIONAI TEEFATOIScvieceiecect ettt ettt en e 3-44
Using Iterators and Result Sets as Host Variables...........cccooiiniincincccc 3-48
Using Iterators and Result Sets as Iterator COIUMNS..........c.cooiirienicienicien e 3-52
ASSIGNMENT STATEMENTS (SET) ..viiiiiiiiiiie ittt et e e e e 3-55
Stored Procedure and FUNCLION CallS ..o 3-57
Calling StOred PrOCEAUIES..........ciiiieiiietirtet ettt et et e eb ettt er e er e ber e ber e 3-57
Calling StOred FUNCLIONSc.iiiiiii ettt sttt et et er e eb b er e en e nen e 3-58
Using Iterators and Result Sets as Stored Function REtUINS.........cccoceviiiicieiiniine e 3-60

Key Programming Considerations

Naming Requirements and ReSIFICIIONSc.coiiiiiiiiiii e 4-2
Java Namespace—Local Variable and Class Naming RestriCtions..........ccoccoeveeencienicenienen. 4-2
SQLI NAIMESPACE ... ceecvitiit ettt ettt e ek et r st er e sr e et en e n e 4-3
SQL NAIMESPACE ... cvteririit ettt ettt e ek e et eb e r et ar e nr ettt en e n e 4-4
File Name Requirements and ReStriCtiONS.........couieiiciic i 4-4

Selection OF the IDBEC DIIVENccoiiiiiieceiie ettt e ettt eb et eb et eb et en et eb e en e 4-5
Overview of the Oracle IDBC DIIVEIS........cccuiiiiirerie et e 4-5
Driver Selection fOr TranSIation ... 4-6
Driver Selection and Registration for RUNTIME ..o, 4-7

CONNECLION CONSIUBIALIONS.eviii ettt ettt e ettt e e e et e e e et e e s st e e e st b e e e st aessabeee s st bessaseeessaes 4-8

Single Connection or Multiple Connections Using DefaultContextcccocooevvneininnn. 4-8
(@1 T YT o [@0] s T=To1 1 o] o - JN OO SRP R TPR 4-12
Multiple Connections Using Declared Connection Context CIassesccccoeeevrvrivrinannne 4-14
More ADOUL the OFacle CIASScviiiie i 4-14
More About the DefaultContexXt CIaSS ..o s 4-16
ConNection fOr TraNSIAtION. ..o e 4-19
Connection for CUSTOMIZATIONcoouiiiiii i e 4-19
NU-HANATING .ottt eb et eb et b et eb et eb et er e ben et 4-20
Wrapper Classes for NUI-HaNAIING ..o 4-20
Examples of NUH-HANAING ..ot e e 4-21
EXCEPLiON-HANAIING BASICS ..ottt et e s e 4-23
SQLJ and JDBC Exception-Handling REQUIrEMENTSccooeiienieniieneee e 4-23
ProcesSiNg EXCEPTIONS ...cc.oiuiiiie ettt ettt sttt b e et sre e e neen 4-24
Using SQLEXCEPLION SUDCIASSES ..ottt 4-26
BasiC TranSaction CONTIOL..........oiiiiiiiic e e 4-28
OVEIVIEW Of TraNSACTIONS.c.ecviictii ettt ettt bbbt en e 4-28
Automatic Commits versus Manual COMMILS........ccoiiiriiiinie e 4-28
Specifying Auto-Commit as You Define a CoONNECLION ..o vieiienicenece e 4-29
Modifying Auto-Commit in an EXisting CONNECLIONccecvviiieiiie e 4-30
Using Manual COMMIT and ROLLBACK ..ot 4-30
Effect of Commits and Rollbacks on Iterators and Result Setsccocvvevniniinicenecnne, 4-31
Summary: First Steps in SQLJ COUEccoiriiiiiiiiie i e 4-32
IMPOrt REQUITEA CIASSES.......eiviiiiiieiirietinte st 4-32
Register JDBC Drivers and Set Default CONNECLIONccvvieiriiinieine e 4-33
Set Up EXCeption HANAIINGoovciiieiie ittt 4-33
Set Up Host Variables, Execute SQLJ Clause, Process ReSUItScccooviiiiriiiic e, 4-34
Example of Single-Row Query using SELECT INTO......cccciiiiiiiniiiirene e 4-35
Set UP @ NAMEA HEFALOT ...ttt ettt e e s 4-36
Example of Multiple-Row Query Using Named Iteratorccoceooeveieevencicciiccee 4-37

5 Type Support

Supported Types FOr HOSt EXPIrESSIONS.oviiiiiirieie et ettt et s e en e e 5-2
Supported TYPeS FOr Oracle8i........ccooi i e 5-2
JDBC 2.0 TYPE SUPPOIT c.oeviictiit ittt sttt ettt 5-6

Vi

Wrapping PL/SQL BOOLEAN, RECORD, and TABLE TYPES........cccccvnriiiiieeie e 5-8

Backwards Compatibility for Oracle 8.0.X and 7.3.Xccoviriiiieniie et 5-9
SUPPOIT FOP STFEAIMS ... ettt 5-11
General Use Of SQLI SEFBAMISciiiiieeeieie et ettt st ste e e e 5-11
Using SQLJ Streams to Send Data to the Database ..o 5-12
Retrieving Data into Streams—PreCaULIONScccvieiie i 5-15
Using SQLJ Streams to Retrieve Data from the Databasec.ccocoveiiniincincincine, 5-16
Processing SQLJ SIFEAIMScvcuiiiirieiiit ettt e 5-18
Examples of Retrieving and Processing Stream Dataccccocevoeviieeieniciece e 5-19
SQLJ Stream Objects as Output Parameters and Function Return Valuescc......... 5-21
Stream Class METNOUS. ...ttt ben e 5-23
Oracle TYPE EXIENSIONS. ..ottt 5-25
Package Oracle.SOL........oo i e 5-26
Support for BLOB, CLOB, and BFILE...........cccociiiiiieie et 5-26
SUPPOIt fOr Oracle ROWIDcoiiiiciiictiiet ettt ettt 5-33
Support for Oracle REF CURSOR TYPEScviiiiieiiieieie ittt 5-36
Support for Other Oracle8i DAtatyPeS........ccvierierre sttt 5-38
Extended Support for BIgDECIMALcciiiiiiiie e 5-38

Objects and Collections

FNEFOTUCTION ..ttt e b bbbt eh bbb e e s 6-2
Oracle ObjJects aNd COIECLIONS.........ci ittt e e e eb e 6-4
Oracle Object FUNAAMENTAIS.........coiiiiie e s e 6-4
Oracle Collection FUNAAMENTAISccoouiiiiiiieiie e 6-4
Object and ColleCtion DAtatYPEsS.........ccooveiiiiiieiiie ittt 6-5
CUSTOM JAVA CIASSES. ...ttt ittt ekttt ettt bbb bbb st st b e st b e st eb e st eb et eb et eb et bt eb e er s 6-6
Custom Java Class Interface SPeCifiCationsc.ccooveiiiiiieiine i e 6-6
Custom Java Class Support for Object Methods...........cooeeviiiiiiiiiiice 6-9
Custom Java Class REQUITEMENTScciiieiieiie ettt ettt er e 6-10
Compiling CUStOM JaVa CIaSSES..........ciieiiiiiirie sttt ettt 6-15
Reading and Writing CUSTOM Dataccooueieiiiiiiiiiie ettt 6-16
Additional Uses for CustomDatum Implementations.............ccccovvininiennicsninie e 6-16
User-Defined Types in the Database ... s 6-18
Creating ODJECT TYPBS . cui ittt ettt ettt ettt e b et s be bt see e ere st en e es 6-18
Creating CollECTION TYPES ... ittt et e eb bbb b er e ben e 6-20

vii

JPublisher and the Creation of CuStom JAVA CIaSSESueeeeeiiiieie et 6-23

What JPUDIISNEr PrOQUCESoouiviiciiictiie st e s 6-23
Generating CUStOM JAVa ClaSSEScciiiiiiieee ittt ettt e e ene e 6-26
JPublisher Input Files and Properties Files ... 6-34
Creating Custom Java Classes and Specifying Member Names...........c.ccoooevnieniineennn 6-36
JPublisher Implementation of Wrapper Methods.............cccoiiininineeee e 6-37
JPublisher Custom Java Class EXaAMPIES ..o s 6-38
Extending Classes Generated by JPUBIISNEN ..ot 6-42
Strongly Typed Objects and References in SQLJ Executable Statements............c.cccceeuenene. 6-48
Selecting Objects and Object References into Iterator ColuMNS..........ccocceevieeiieiiincee 6-48
UPating @n OBJECL........ooi ittt e e st ettt ebesh e e s neen 6-50
Inserting an Object Created from Individual Object Attributescccccvvrvieiniiiinienene. 6-51
Updating an ODJect REFEIENCEcovouiiiieie et e e 6-52
Strongly Typed Collections in SQLJ Executable Statementscccooveviiiiiniccnne s 6-54
Accessing Nested Tables—TABLE syntax and CURSOR SYNtaXcoccovevreinennennne. 6-54
Inserting a Row that Includes a Nested Table..........coooiiiiiiiiii s 6-55
Selecting a Nested Table into @ HOSt EXPreSSIONcccoveviiiiiie s 6-56
Manipulating a Nested Table Using TABLE SYNTaXccccoviiiriiiininiee e 6-58
Selecting Data from a Nested Table Using a Nested Iterator..........ccccocooeveneiniiniinecenenn 6-59
Selecting a VARRAY into @ HOSt EXPIESSIONccovveviiieiiiieiie ettt 6-61
Inserting a Row that Includes @ VARRAY ..ot s 6-62
SerializiNg JAVA ODJECTScuciiiieiie i s e e 6-63
Serializing Java Classes to RAW and BLOB COIUMNSc.coccviiiiiine s 6-63
SerializableDatum - A CustomDatum Implementationcc.ccoveviiincincinceenens 6-65
SerializableDatum in SQLJ APPLICALIONScociriiiiiiieiee e 6-68
SerializableDatum (COMPIEte ClaSS)ccuriiiiiiieiiiie ettt e 6-69
Weakly Typed Objects, References, and Collections...........ccocoeveiicince e 6-71
Support for Weakly Typed Objects, References, and Collectionsc.ccccceeveeiencnnnnennn. 6-71
Restrictions on Weakly Typed Obijects, References, and Collectionscccccceveeneneen. 6-72

7 Advanced Language Features

CONNECTION CONTEXES ...ttt es s e s s e er e e 7-2
CoNNECtioN CONEXE COMCEPLS. .. c.eiiiiieiietiierie ettt ettt sr st et besee st se s s e e 7-2
ConNNECtion CONTEXE LOGISTICSvcviiiitiiiiiietiiet ittt ettt ettt er e 7-3
More About Declaring and Using a Connection Context Classcccccvveiieiieiicienns 7-4

viii

Example of Multiple ConNection CONTEXES.........cuoiiiiiie e e s 7-7

Implementation and Functionality of Connection Context Classes..........c.cocoveoereieneieniennn. 7-9
Use of the IMPLEMENTS Clause in Connection Context Declarations.............c.ccceeeene. 7-10
Semantics-Checking of Your Connection Context USage...........cccoeireineincineinccnieeenas 7-11
DataSOUICE SUPPOIT ..ottt ettt et er et enna 7-12
EXECULION CONTEXLS ...ttt ettt ettt bbbttt et b e eb et eb e 7-15
Relation of Execution Contexts to Connection CONEXESc.covieriiienicieneienieineecne e 7-15
Creating and Specifying Execution Context INStaNCEScccecevereeenireeie e 7-16
Execution Context SyNChroNization..........c.cociieiininiii e 7-17
EXecutionConteXt MENOASc.ccoi i e 7-18
Relation of Execution Contexts to Multithreading ... 7-22
MUItIthreading N SQLJ......c.ciiiiiiict et 7-23
Iterator Class Implementation and Advanced Functionality...........c.ccccoconiniincincincnnnns 7-25
Implementation and Functionality of Iterator Classes..........cccoeviniieniiincienccc e 7-25
Use of the IMPLEMENTS Clause in Iterator Declarations..........c.ccocoveieniincincinccneens 7-26
SUDCIASSING ITEFAtOr CIASSESeiviieieiieiirietiriet ettt ettt st eb et r bbb er e sben e 7-27
SCrOIIADIE TTEFALOIS ...ttt e 7-27
Advanced Transaction CONTIOL ... e s 7-32
SET TRANSACTION SYNTAX c..etitiitieeiie ittt ettt s et s et s bbb e 7-32
ACCESS IMOOE SETEINGS . ..c.eieee ettt ettt ebe bbb et es et ee e en s es 7-33
1SOIAtION LEVEI SEHINGSeineieie ettt ettt st s et e enea 7-33
Using JDBC Connection Class Methods ..ot e 7-34
SQLJ and JDBC INteroperability ..o e 7-36
SQLJ Connection Context and JDBC Connection Interoperabilitycccoccoveinciicnnnes 7-36
SQLJ Iterator and JDBC Result Set Interoperabilityccovirininic s 7-41

8 Translator Command Line and Options

Translator Command Line and Properties FIles ... s 8-2
SQLJ Options, Flags, aNd PrefiXeS.......cciiiiiiiiiieiie et 8-3
Command-Line Syntax and OPeratioNS.c.cooeuieiieiiie i 8-10
Properties Files for Option SEtNGSc..oiviiir i 8-13
SQLJ_OPTIONS Environment Variable for Option Settingsccccovveniiviiiiiiece s 8-17
Order of Precedence of Option SEttINGS......ccoeriiiiiie i 8-17

Basic Translator OPTIONSc.ccco it s 8-19
Basic Options for Command Ling ONIY ... 8-19

Options for Output Files and DIreCtONIES.ccuvcuiiiirieeiieese st 8-25

CONNECTION OPTIONS. ...tttk ettt et sttt eb e e eb e st eb et eb et b et eb et eb e beb e bebeas 8-30
Reporting and Line-Mapping OPLiIONS ..o e 8-41
Advanced Translator OPTIONS..........oiiiiir ettt r st eb et er e ber e benen 8-48
Prefixes that Pass Option Settings to Other EXecutables ... 8-48
Flags for SPECial PrOCESSINGc.coiiiiiiieie ittt s 8-53
Semantics-Checking OPLIONScoo ittt 8-57
Translator Support and Options for Alternative ENVironments.........cc.cocooeeneienvenecinecene 8-64
Java and ComMPIler OPTIONScouiiiiiie it e 8-64
CUSTOMIZALION OPTIONStiiie ettt 8-71

9 Translator and Runtime Functionality

Internal Translator OPEratioNS ..o it 9-2
Code-Parsing and SYyNtax-CheCKiNgocuriiiiiieee e 9-2
SeMANTICS-CRECKING ...t 9-2
CO0E GENETALIONevtiie bbb e s bbbt eb e nene 9-5
JAVA COMPITALION ...ttt b e e e 9-8
Profile CUSTOMIZATIONc.ooueuiiiiiiie et e s e e e 9-10

Functionality of Translator Errors, Messages, and EXit COUESoccuvirineniine s 9-12
Translator Error, Warning, and Information Messages.........cccoeovrrnieninninsene e, 9-12
Translator StAtUS IMESSATEScovcuerieiirieririetiriet ettt ettt et st eb et eb et eb et eb et eb et bbb aen e 9-14
TranSIAtor EXIT COOESottt e sr et et et et enenaerea 9-15

SQLI RUNTIMIE ...ttt ettt et e ettt et et et b bbb bt st en bbb st e st b beb e b sb e b e nne e ee 9-16
RUNTIME PACKAGES ... vttt e s s s bbb 9-16
Categories Of RUNTIME EFTOFS.......cuiii ettt sttt s sr s e en e 9-18

NLS Support in the Translator and RUNTIME ..o 9-19
Character Encoding and Language SUPPOIToueiiiiiaieiiiie e seeeerie s seesiese e seesnens 9-19
SQLJ and Java Settings for Character Encoding and Language SUpPpPOrt........c.ccccoceeeevenenn. 9-22
NLS Manipulation OutSide OF SQLU.......ccuiiiiiiiiiiiriie e e 9-25

10 Profiles and Customization

MOTE ADOUL PrOTIIES ...ttt e e et s e 10-2
Creation of a Profile During Code GEeNEratioN..........ccoceiieiieieie it 10-2
SAMPIE Profile ENTIY ..o ettt et e eeneas 10-3

More About Profile CUSTOMIZATIONcciiiiiiiiiiie et 10-5

11

Overview of the Customizer Harness and CUSTOMIZEIScouvivueeeiiieieecee e 10-5

Steps in the CUStOMIZALION PrOCESSiciiieiirieirie ettt ettt sr e beb e bes e sben e 10-6
Creation and Registration of a Profile Customizationcccccvininiinincnces 10-7
Customization Error and Status MESSAGEScoveruriiririeeiiriireie e seeseres s ere st sesie e seeneanens 10-9
Functionality of a Customized Profile at RUNTIMEcccoiiiiiiiiie e 10-9
Customization Options and ChooSing @ CUSLOMIZENcccierieniiiniee e 10-11
Overview of Customizer Harness OPLiONS.........cooviiiiiiiinie e 10-11
General Customizer Harness OPLiONS........cocoveiriiiieie et s eneeeas 10-13
Customizer Harness Options for CONNECLIONS..........coocoiiiiieriieee et 10-17
Customizer Harness Options that Invoke Specialized Customizers...........ccccoeevcvnieene 10-19
Overview of Customizer-SPecific OPLIONScccvi i 10-22
Oracle CUSTOMIZEN OPLIONSiiviiietiiettiet ettt e 10-23
SQLJ Options for Profile CUStOMIZAtioNccoiiiiiiiiie e 10-34
Use OF JAR Files FOr Profiles........cooiiiiiiiic e e 10-36
JAR File REQUITEIMENTS ...ttt bbb 10-36
JAR FIIE RESUILS ...t e ettt et 10-37
SQLCheckerCustomizer for Profile Semantics-Checking.........cocoooiiiiniiniincincce 10-38
Invoking SQLCheckerCustomizer with the Customizer Harness verify Option 10-38
SQLCheckerCustomizer OPLIONScccouiiiiii ettt sttt s eeneeneas 10-39

SQLJ in the Server

INEFOTUCTION ..ottt ettt eb et b e bt b et bbb bbbt b ettt st 11-2
Creating SQLJ Code for Use Within the Server ... 11-3
Database Connections Within the Server ... 11-3
Coding ISSUES WIthiN the SEIVENoov it 11-3
Default Output DEVICE IN the SEIVETciiiiieiiees et 11-4
Name ReSOIULION 1N thE SEIVEN ..o e e 11-5
SQL Names VErsuS JAVA NAIMIESocoiiiiiiiiiiiiiie ettt sttt sr e e e e see e 11-6
Translating SQLJ Source on a Client and Loading COMPONENTSoccovveineineinieeneennns 11-7
Loading Classes and Resources into the SErVEr ... 11-7
Loaded Class and Resource Schema ODBjJeCtS........cccviiieiriiieie e 11-9
Publishing the Application After Loading Class and Resource Files..........cc.cccccovvvvnnnnnn. 11-11
Summary: Running a Client Application in the SErver ... 11-12
Loading SQLJ Source and Translating in the SErver ... 11-13
Loading SQLJ Source Code into the SErVer ... 11-13

xi

12

Xil

Option Support in the Server Embedded Translatorcccoco v, 11-15

Loaded Source and Generated Class and Resource Schema ODbjects...........cccoevvernene 11-18
Error Output from the Server Embedded Translator.............ccoooovviiniiiniisciec 11-22
Publishing the Application After Loading Source Filesc.cccoovviiniinninsinscnce 11-22
Dropping Java SChema ODJECTSc..ociiiiii ittt e 11-23
Additional CONSIAEIALIONScoiiuiiieiii ittt s 11-24
Java Multithreading in the SEIVEN ... 11-24
Recursive SQLJ Calls iN the SEIVET ...t 11-24
Verifying that Code is RUNNING iN the SEIVEr ... 11-26
Additional Vehicles for SQLJ iN the SErVer........c e 11-27
ENTEIPriSE JAVABEANSccuiitiiiiie ettt ettt sttt ettt sttt sttt e b 11-27
CORBA SEIVEE ODJECTS.....uviiiieetietiie ettt ettt s r et st se et sttt ebe et sb e e seeneenaens 11-28

Sample Applications

PrOPEITIES FIIES ... bbbttt bbb 12-2
Runtime Connection Properties File ... 12-2
SQLJ Translator Properties FIlecooiiiiiiii et 12-2

BASIC SAMPIES ... e bbb e 12-5
Named Iterator—NamedIterDemO.SOlj......ccoooiririieie e 12-5
Positional Iterator—PoSItErDEMO.SOL .. coveviviiriieieiire e 12-9
Host EXpressions—EXPrDemMO.SOl]covoeiiiiiiii e 12-13

Object, Collection, and CustomDatum SAMPIES ... e 12-20
Definition of Object and COlIECtION TYPESccooiiriiiriiiirieireiiet e 12-20
Oracle Objects—ODJECtDEMO.SOIJ .. .coveireieireieirieiire et e 12-27
Oracle Nested Tables—NestedDemo1l.sglj and NestedDemo2.5q1jccoovveeneinieennnnn 12-36
Oracle VARRAYs—VarrayDemol.sglj and VarrayDemo2.5q1jcccooeinninninncnncnnn 12-45
General Use of CustomDatum—BetterDate.java...........coccoierieeiiieieeeneeie e 12-48

AAVANCEA SAMPIES ..o bbbt b bbb 12-53
REF CURSOR—REfCUISDEMO.SOL] ...cvveieieiieieenieee sttt e 12-53
Multithreading—MultiThreadDemo.Sg1j.......ccooviviriiiiieiiee e 12-56
Interoperability with JDBC—IDBCINteropDemo.Sqljccccoeirieineinieiieiiceece e 12-58
Multiple Connection Contexts—MultiSchemaDemo.sqlj.........coovvviriiiiiniiiicee, 12-60
Data Manipulation and Multiple Connection Contexts—QueryDemo.sqlj.................... 12-61
Subclassing Iterators—SubclassIterDemMO.SOlj....cccocvverieiienice e 12-64
PL/SQL in SQLJ for Dynamic SQL—DynamicDemo.Sqlj.......ccccoovoeeininicienenence e 12-67

Performance ENhancement SamPIes ... e 12-73

Prefetch Demo—PrefetchDemO.SOIJcvveiriciiiiiee e 12-73
Update Batching—BatChDemMO.SOI]......ccvviririeiiiiiieiie e 12-78
APPIET SAMPIE ..ot h bbb s 12-82
Generic Applet HTML Page—Applet.html ... 12-82
Generic Applet SQLJ Source—ApPPIEtMaIN.SOl] ...ccooviiiiice e 12-83
SEIVEr-SIAE SAMPIE ... bbb 12-89
SQLJ in the Server—-ServerDemMO.SOIj. ..ot 12-89
JDBC Versus SQLJ SAMPIE COUE.......cuiiiiiiieirie ettt e e 12-90
JDBC Version of the SAample Code ... 12-90
SQLJ Version of the SAmMPIe COAE.......c.ooiiiiiii i 12-94

Performance and Debugging

Performance ENNanNCemMENTt FEATUIESc.ccoiiiirieinici ettt e A-2
ROW PrefetCRINGottt ettt e eb et eb et ne b A-3
] LT 0 =T 0 | A @ Tod 1 Vo TSRS A-3
UPAALE BAICNING ...ttt et e b e e eb e st eb e e eb et eb et eb e A-5
ColUMN DEFINITIONSccvi ittt eb bbb en e A-16
Parameter Size DefiNItiONS ..ot ettt A-17
Auditorinstaller Customizer for DEDUGQINGcovoiiiiiiiiiirct s A-20
Overview of Auditors aNd COAE LAYEISccoueeeviiiieie ettt A-20
Invoking Auditorinstaller with the Customizer Harness debug Option...........c..cccce........ A-21
Auditorinstaller RUNTIME OULPUL ..ot eneas A-22
AUditorINStaller OPLIONSc.oii ittt s se e eneas A-24
Full Command-Ling EXAMPIES.......cccviiiiiiiiii s A-27
Additional SQLJ Debugging ConsSiderationsc.ccviiriiniiiniiinecinesesee e A-29
SQLI -lINEME@P FIAG ... cee ettt ettt en e A-29
Server-Side debUg OPLION ..ot e et st en e A-30
Developing and Debugging in JDEVEIOPET ..ot e A-30

SQLJ Error Messages

Translation TIME IMESSAGES .. .c.uvu ittt et se b e b e e b s b s bbb bbb en B-2
RUNTIME IMESSAGEScetetiietiie sttt sttt et e e s b b b b er e sr e e B-44

xiii

Xiv

Send Us Your Comments

SQLJ Developer’s Guide and Reference, Release 3 (8.1.7)
Part No. A83723-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

Did you find any errors?

Is the information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?
What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,
section, and page number (if available). You can send comments to us in the following ways:

Electronic mail — jpgcomnt@us.oracle.com

FAX - 650-506-7225. Attn: Java Platform Group, Information Development Manager
Postal service:

Oracle Corporation

Information Development Manager

500 Oracle Parkway, Mailstop 40p978

Redwood Shores, CA 94065

USA

Please indicate if you would like a reply.

If you have problems with the software, please contact your local Oracle World Wide Support Center.

XV

XVi

Preface

This preface introduces you to the Oracle8i SQLJ Developer’s Guide and Reference,
discussing the intended audience, structure, and conventions of this document. A
list of related Oracle documents is also provided.

Intended Audience

This manual is intended for anyone with an interest in SQLJ programming but
assumes at least some prior knowledge of the following:

Java

SQL

Oracle PL/SQL
JDBC

Oracle databases

Although general knowledge of SQL and JDBC is sufficient, any knowledge of
Oracle-specific SQL and JDBC features would be helpful as well.

See "Related Documents” on page xxi below for the names of Oracle documents that
discuss SQL and JDBC.

Xvii

Document Structure
The two major aspects of using SQLJ are:

xviii

= creating your SQLJ source code

= running the SQLJ translator

Chapters 3 through 7 provide information about programming features, with
chapters 3 and 4 covering the most important aspects.

Chapter 8 provides information about translator options and features.

In all, this document consists of twelve chapters and two appendixes, as follows:

Chapter 1, "Overview"

Chapter 2, "Getting Started"

Chapter 3, "Basic Language
Features"

Chapter 4, "Key Programming
Considerations"

Chapter 5, "Type Support"

Chapter 6, "Objects and
Collections"

Chapter 7, "Advanced
Language Features"

Chapter 8, "Translator
Command Line and Options"

Introduces SQLJ concepts, components, and
processes. Discusses possible alternative
deployment or development scenarios.

Guides you through the steps of testing and
verifying the installation of the Oracle database,
Oracle JDBC drivers, and Oracle SQLJ.

Discusses SQLJ programming features you must
have for basic applications. Focuses largely on
standard SQLJ constructs, as opposed to Oracle
extended functionality.

Discusses key issues to consider as you write
your source code, such as connections,
null-handling, and exception-handling.

Lists Java types that Oracle SQLJ supports,
discusses use of stream types, and discusses
Oracle type extensions in the database and the
Java types that correspond to them.

Discusses Oracle SQLJ support of user-defined
object and collection types, including use of the
Oracle JPublisher utility to generate
corresponding Java types.

Discusses additional SQLJ programming features
you may need for more advanced applications.

Documents command-line syntax, properties
files, and options for the Oracle SQLJ translator.

Chapter 9, "Translator and
Runtime Functionality"

Chapter 10, "Profiles and
Customization"

Chapter 11, "SQLJ in the Server"

Chapter 12, "Sample
Applications"

Appendix A, "Performance and
Debugging"

Appendix B, "SQLJ Error
Messages"

Discusses the functionality of translator
operations, translator and runtime error
messages, and NLS support.

Describes SQLJ profiles (used in implementing
SQL operations); documents options you can
specify during translation regarding the
customization of your profiles for particular
environments.

Discusses how to create and load SQLJ
applications to run in the server, typically as
stored procedures or functions. This includes
optional use of the server-side embedded
translator.

Contains source code for a range of fully
functional SQLJ sample applications. Oracle
provides these applications in the deno directory
on the product CD.

Briefly discusses performance tuning and refers to
other useful documentation; discusses debugging
scenarios, focusing on the Audi t or I nstal | er
utility that is provided with Oracle SQLJ.

Lists Oracle SQLJ translator and runtime error
messages, their causes, and what actions you
should take in response.

Xix

Document Conventions

XX

This document uses UNIX syntax for file paths (for example:
[nyroot/ nyfile.htm). If you are using some other kind of operating system,
then substitute the appropriate syntax.

This document uses [Or acl e Horre] to indicate your Oracle home directory.

In addition, this document uses the following conventions:

Convention Meaning

italicized regular text Italicized regular text is used for emphasis or to indicate
a term that is being defined or will be defined shortly.

Horizontal ellipsis points in sample code indicate the
omission of a statement or statements or part of a
statement. This is done when you would normally
expect additional statements or code to appear, but such
statements or code would not be related to the example.

code text Code text within regular text indicates class names,
object names, method names, variable names, Java types,
Oracle datatypes, file names, and directory names.

italicized code_text Italicized code text in a program statement indicates
something that must be provided by the user.

<italicized code_text > Angle brackets enclosing italicized code text in a
program statement indicates something that can
optionally be provided by the user.

In this document, it was not feasible to use more standard conventions, such as
square brackets [] to enclose optional items to be provided, because of the
particulars of SQLJ coding syntax.

For example, in the following statement the square brackets and curly brackets are
part of SQLJ coding syntax, but the angle brackets indicate that connct xt _exp,
execct xt _exp,and resul t s_exp are optional entries. You must provide a SQL
operation, however.

#sql <[<connct xt_exp><, ><execct xt_exp>|> <results_exp> = { SQ operation };
And in the following SQLJ command line option (- user), the angle brackets

indicate that conn_cont ext _cl ass and the password (with preceding slash) are
optional entries. You must provide a username, however.

- user <@onn_cont ext _cl ass>=user nane</ passvor a>

Related Documents

This section lists other documentation of interest.

See the following additional documents available from the Oracle Java Platform
group:

Oracle8i Java Developer’s Guide

This book introduces the basic concepts of Java in Oracle8i and provides
general information about server-side configuration and functionality.
Information that pertains to the Oracle Java platform as a whole, rather than to
a particular product (such as JDBC, SQLJ, or EJBs) is in this book.

Oracle8i JPublisher User’s Guide

This book describes how to use the JPublisher utility to translate object types
and other user-defined types to Java classes. If you are developing SQLJ or
JDBC applications that use object types, VARRAY types, nested table types, or
object reference types, then JPublisher can generate custom Java classes to map
to them.

Oracle8i JDBC Developer’s Guide and Reference

This book covers programming syntax and features of Oracle’s implementation
of the JDBC standard (for Java Database Connectivity). This includes an
overview of the Oracle JDBC drivers, details of Oracle’s implementation of
JDBC 1.22 and 2.0 features, and discussion of Oracle JDBC type extensions and
performance extensions.

Oracle8i Java Stored Procedures Developer’s Guide

This book discusses Java stored procedures—programs that run directly in the
Oracle8i server. With stored procedures (functions, procedures, database
triggers, and SQL methods), Java developers can implement business logic at
the server level, thereby improving application performance, scalability, and
security.

Oracle8i Enterprise JavaBeans and CORBA Developer’s Guide

This book describes the Oracle extensions to the Enterprise JavaBeans and
CORBA specifications.

You can also refer to the following documents from the Oracle Server Technologies
group.

Net8 Administrator’s Guide

XXi

xXii

This book contains information about the Oracle8 Connection Manager and
Net8 network administration in general.

Oracle8i National Language Support Guide

This book contains information about NLS environment variables, character
sets, and territory and locale settings. In addition, it contains an overview of
common NLS issues, typical scenarios, and NLS considerations for OCI and
SQL programmers.

Oracle Advanced Security Administrator’s Guide

This book describes features of the Oracle Advanced Security Option (formerly
known as ANO or ASO).

Oracle8i Application Developer’s Guide - Fundamentals

This book introduces basic design concepts and programming features in using
an Oracle8i database and creating database access applications.

Oracle8i Application Developer’s Guide - Large Objects (LOBs)

This book describes general functionality and features of database large objects
(LOBs) in Oracle8i.

Oracle8i Application Developer’s Guide - Object-Relational Features

This book contains general information about structured objects and other
object-relational database features in Oracle8i.

Oracle8i Supplied PL/SQL Packages Reference

This book documents PL/SQL packages available as part of the Oracle8i server,
some of which may be useful to call from JDBC applications.

PL/SQL User’s Guide and Reference

PL/This book explains the concepts and features of PL/SQL, Oracle’s
procedural language extension to SQL.

Oracle8i SQL Reference

This book contains a complete description of the content and syntax of the SQL
commands and features used to manage information in an Oracle database.

Oracle8i Reference
This book contains general reference information about the Oracle8i server.

Oracle8i Error Messages

This book contains information about error messages that can be passed by the
Oracle8i server.

Documentation from the following Oracle groups may also be of interest.
« Oracle8i Application Server documentation

This documentation contains information about how the Oracle8i Application
Server supports JDBC.

» Oracle8i JDeveloper Suite documentation

This documentation contains information about how the Oracle8i JDeveloper
Suite supports JDBC.

For documentation of SQLJ standard features and syntax, refer to ANSI
specification X3.135.10-1998:

« Information Technology - Database Languages - SQL - Part 10: Object Language
Bindings (SQL/OLB)

You can obtain this from ANSI at the following Web site:

htt p://waw ansi . or g/

XXiii

XXiV

1

Overview

This chapter provides a general overview of SQLJ features and scenarios. The
following topics are discussed:

Introduction to SQLJ

Overview of SQLJ Components

Overview of Oracle Extensions to the SQLJ Standard
Basic Translation Steps and Runtime Processing
Alternative Deployment Scenarios

Alternative Development Scenarios

Overview 1-1

Introduction to SQLJ

Introduction to SQLJ

This section introduces the basic concepts of SQLJ and discusses the complementary
relationship between Java and PL/SQL in Oracle database applications.

Basic Concepts

SQLJ enables applications programmers to embed static SQL operations in Java
code, in a way that is compatible with the Java design philosophy. A SQLJ program
is a Java program containing embedded static SQL statements that comply with the
ANSI-standard SQLJ Language Reference syntax. (The 1SO standard for SQLJ has
been finalized, but not published. Oracle SQLJ release 8.1.7 also supports the SQLJ
ISO standard specification.) Static SQL operations are predefined—the operations
themselves do not change in real-time as a user runs the application, although the
data values that are transmitted can change dynamically. Typical applications
contain much more static SQL than dynamic SQL. Dynamic SQL operations are not
predefined—the operations themselves can change in real-time and require direct
use of JDBC statements. Note, however, that you can use SQLJ statements and JDBC
statements in the same program.

SQLJ consists of both a translator and a runtime component and is smoothly
integrated into your development environment. The developer runs the translator,
with translation, compilation, and customization taking place in a single step when
the sql j front-end utility is run. The translation process replaces embedded SQL
with calls to the SQLJ runtime, which implements the SQL operations. In standard
SQLJ this is typically, but not necessarily, performed through calls to a JDBC driver.
In the case of an Oracle database, you would typically use an Oracle JDBC driver.
When the end user runs the SQLJ application, the runtime is invoked to handle the
SQL operations.

The Oracle SQLIJ translator is conceptually similar to other Oracle precompilers and
allows the developer to check SQL syntax, verify SQL operations against what is
available in the schema, and check the compatibility of Java types with
corresponding database types. In this way, errors can be caught by the developer
instead of by a user at runtime. The translator checks the following:

« syntax of the embedded SQL

« SQL constructs, against a specified database schema to ensure consistency
within a particular set of SQL entities (optional)

It verifies table names and column names, for example.

1-2 SQLJ Developer’s Guide and Reference

Introduction to SQLJ

« datatypes, to ensure that the data exchanged between Java and SQL have
compatible types and proper type conversions

The SQLJ methodology of embedding SQL operations directly in Java code is much
more convenient and concise than the JDBC methodology. In this way, SQLJ reduces
development and maintenance costs in Java programs that require database
connectivity. When dynamic SQL is required, however, SQLJ supports
interoperability with JDBC such that you can intermix SQLJ code and JDBC code in
the same source file. Alternatively, you can use PL/SQL blocks within SQLJ
statements for dynamic SQL.

Java and SQLJ versus PL/SQL

Java (including SQLJ) in Oracle database applications does not replace PL/SQL.
Java and PL/SQL are complementary to each other in the needs they serve.

While PL/SQL and Java can both be used to build database applications, the two
languages were designed with different intents and, as a result, are suited for
different kinds of applications:

« PL/SQL is a better solution for SQL-intensive applications. PL/SQL is
optimized for SQL, and so SQL operations are faster in PL/SQL than in Java.
Also, PL/SQL uses SQL datatypes directly, while Java applications must
convert between SQL datatypes and Java types.

« Java, with its superior programming model, is a better solution for
logic-intensive applications. Furthermore, Java’s more general type system is
better suited than PL/SQL for component-oriented applications.

Oracle provides easy interoperability between PL/SQL and Java, ensuring that you
can take advantage of the strengths of both languages. PL/SQL programs can
transparently call Java/SQLJ stored procedures, enabling you to build
component-based Enterprise JavaBeans and CORBA applications. PL/SQL
programs can have transparent access to a wide variety of existing Java class
libraries through trivial PL/SQL call specifications.

Java programs can call PL/SQL stored procedures and anonymous blocks through
JDBC or SQLJ. In particular, SQLJ provides syntax for calling stored procedures and
functions from within a SQLJ statement, and also supports embedded PL/SQL
anonymous blocks within a SQLJ statement.

Overview 1-3

Introduction to SQLJ

Note: As an alternative to using JDBC for dynamic SQL, you can
use PL/SQL anonymous blocks within SQLJ statements. See
"PL/SQL in SQLJ for Dynamic SQL—DynamicDemo.sqlj" on
page 12-67 for a sample.

1-4 SQLJ Developer’s Guide and Reference

Overview of SQLJ Components

Overview of SQLJ Components

This section introduces the main SQLJ components and the concept of SQLJ profiles.

SQLJ Translator and SQLJ Runtime

Oracle SQLIJ consists of two major components:

Oracle SQLJ translator—This component is a precompiler that developers run
after creating SQLJ source code.

The translator, written in pure Java, supports a programming syntax that allows
you to embed SQL operations inside SQLJ executable statements. SQLJ
executable statements, as well as SQLJ declarations, are preceded by the #sq|l
token and can be interspersed with Java statements in a SQLJ source code file.
SQLJ source code file names must have the . sql j extension.

The translator produces a . j ava file and one or more SQLJ profiles, which
contain information about your SQL operations. SQLJ then automatically
invokes a Java compiler to produce . cl ass files from the . j ava file.

Oracle SQLJ runtime—This component is invoked automatically each time an
end user runs a SQLJ application.

The SQLJ runtime, also written in pure Java, implements the desired actions of
your SQL operations, accessing the database using a JDBC driver. The generic
SQLJ standard does not require that a SQLJ runtime use a JDBC driver to access
the database; however, the Oracle SQLJ runtime does require a JDBC driver,
and, in fact, requires an Oracle JDBC driver if your application is customized
with the default Oracle customizer (see below).

For more information about the runtime, see "SQLJ Runtime" on page 9-16.

In addition to the translator and runtime, there is a component known as the
customizer. A customizer tailors your SQLJ profiles for a particular database
implementation and vendor-specific features and datatypes. By default, the Oracle
SQLJ front end invokes an Oracle customizer to tailor your profiles for an Oracle
database and Oracle-specific features and datatypes.

When you use the Oracle customizer during translation, your application will
require the Oracle SQLJ runtime and an Oracle JDBC driver when it runs.

Overview 1-5

Overview of SQLJ Components

SQLJ Profiles

SQLJ profiles are serialized Java resources (or, optionally, classes) generated by the
SQLJ translator, which contain details about the embedded SQL operations in your
SQLJ source code. The translator creates these profiles, then either serializes them
and puts them into binary resource files, or puts them into . cl ass files (according
to your translator option settings).

Overview of Profiles

SQLJ profiles are used in implementing the embedded SQL operations in your SQLJ
executable statements. Profiles contain information about your SQL operations and
the types and modes of data being accessed. A profile consists of a collection of
entries, where each entry maps to one SQL operation. Each entry fully specifies the
corresponding SQL operation, describing each of the parameters used in executing
this instruction.

SQLJ generates a profile for each connection context class in your application,
where, typically, each connection context class corresponds to a particular set of
SQL entities you use in your database operations. (There is one default connection
context class, and you can declare additional classes.) The SQLJ standard requires
that the profiles be of standard format and content. Therefore, for your application
to use vendor-specific extended features, your profiles must be customized. By
default, this occurs automatically, with your profiles being customized to use
Oracle-specific extended features.

Profile customization allows database vendors to add value in two ways:

= Vendors can support their own specific datatypes and SQL syntax. (For
example, the Oracle customizer maps standard JDBC Pr epar edSt at enment
method calls in translated SQLJ code to Or acl ePr epar edSt at ement method
calls, which provide support for Oracle type extensions.)

= Vendors can improve performance through specific optimizations.

For example, you must customize your profile to use Oracle objects in your SQLJ
application.

1-6 SQLJ Developer’s Guide and Reference

Overview of SQLJ Components

Notes:

« By default, SQLJ profile file names end in the . ser extension,
but this does not mean that all . ser files are profiles. Any
serialized object uses that extension, and a SQLJ program unit
can use serialized objects other than its profiles. (Optionally,
profiles can be converted to . cl ass files instead of . ser files.)

« A SQLIJ profile is not produced if there are no SQLJ executable
statements in the source code.

Binary Portability

SQLJ-generated profile files feature binary portability. That is, you can port them as is
and use them with other kinds of databases or in other environments if you have
not employed vendor-specific database types or features. This is true of generated

. cl ass files as well.

Overview 1-7

Overview of Oracle Extensions to the SQLJ Standard

Overview of Oracle Extensions to the SQLJ Standard

Beginning with Oracle8i release 8.1.7, Oracle SQLJ supports the SQLJ ISO
specification. Because the SQLJ ISO standard is a superset of the SQLJ ANSI
standard, it requires a JDK 1.2 or later environment that complies with J2EE. The
SQLJ ANSI standard requires only JDK 1.1.x. The Oracle SQLJ translator accepts a
broader range of SQL syntax than the ANSI SQLJ Standard specifies.

The ANSI standard addresses only the SQL92 dialect of SQL, but allows extension
beyond that. Oracle SQLJ supports Oracle’s SQL dialect, which is a superset of
SQL92. If you need to create SQLJ programs that work with other DBMS vendors,
avoid using SQL syntax and SQL types that are not in the standard and, therefore,
may not be supported in other environments. (On your product CD, the directory
[Oracl e Hone]/ sql j/denmp/ conmponent s includes a semantics-checker you can
use to verify that your SQLJ statements contain only standard SQL.)

Oracle SQLJ supports the following Java types as extensions to the SQLJ standard.
Do not use these or other types if you may want to use your code in other
environments. To ensure that your application is portable, use the Oracle SQLJ
-war n=por t abl e flag. (See "Translator Warnings (-warn)" on page 8-42.)

Using any of the following extensions requires Oracle customization during
translation, as well as the Oracle SQLJ runtime and an Oracle JDBC driver when
your application runs:

« instances of or acl e. sqgl . * classes as wrappers for SQL data (see "Oracle Type
Extensions" on page 5-25)

« custom Java classes (classes that implement the or acl e. sqgl . Cust onDat um
interface or the JDBC standard j ava. sql . SQLdat a interface), typically
produced by the Oracle JPublisher utility to correspond to SQL objects, object
references, and collections (see "Custom Java Classes" on page 6-6)

» stream instances (Asci i St ream Bi narySt r eam Uni codeSt r eam) used as
output parameters (see "Support for Streams" on page 5-11)

« iterator and result set instances as input or output parameters anywhere (the
standard specifies them only in result expressions or cast statements; see "Using
Iterators and Result Sets as Host Variables" on page 3-48 and "Using Iterators
and Result Sets as Stored Function Returns" on page 3-60)

For general information about Oracle SQLJ extensions, see Chapter 5, "Type
Support”, and Chapter 6, "Objects and Collections".

1-8 SQLJ Developer’s Guide and Reference

Basic Translation Steps and Runtime Processing

Basic Translation Steps and Runtime Processing
This section introduces the following:
« basic steps of the Oracle SQLJ translator in translating SQLJ source code
« asummary of translator input and output
« processing by the Oracle SQLJ runtime when a user runs your application

For more detailed information about the translation steps, see "Internal Translator
Operations" on page 9-2.

SQLJ source code contains a mixture of standard Java source together with SQLJ
class declarations and SQLJ executable statements containing embedded SQL
operations.

SQLJ source files have the . sql j file name extension. The file name must be a legal
Java identifier. If the source file declares a public class (maximum of one), then the
file name must match the name of this class. If the source file does not declare a
public class, then the file name should match the first defined class.

Translation Steps

After you have completed your . sqlj file, you must run SQLJ to process the files.
This example, for the source file Foo. sql j whose first public class is Foo, shows
SQLJ being run in its simplest form, with no command-line options:

sqlj Foo.sdlj

What this command actually runs is a front-end script or utility (depending on the
platform) that reads the command line, invokes a Java virtual machine (JVM), and
passes arguments to it. The JVM invokes the SQLJ translator and acts as a front end.

This document refers to running the front end as "running SQLJ" and to its
command line as the "SQLJ command line". For information about command-line
syntax, see "Command-Line Syntax and Operations" on page 8-10.

From this point the following sequence of events occurs, presuming each step
completes without fatal error.

1. The JVM invokes the SQLJ translator.

2. The translator parses the source code in the . sql j file, checking for proper
SQLJ syntax and looking for type mismatches between your declared SQL
datatypes and corresponding Java host variables. (Host variables are local Java
variables used as input or output parameters in your SQL operations. "Java

Overview 1-9

Basic Translation Steps and Runtime Processing

Host Expressions, Context Expressions, and Result Expressions” on page 3-15
describes them.)

3. The translator invokes the semantics-checker, which checks the semantics of
embedded SQL statements.

The developer can use online or offline checking, according to SQLJ option
settings. If online checking is performed, then SQLJ will connect to the database
to verify that the database supports all the database tables, stored procedures,
and SQL syntax that the application uses, and that the host variable types in the
SQLJ application are compatible with datatypes of corresponding database
columns.

4. The translator processes your SQLJ source code, converts SQL operations to
SQLJ runtime calls, and generates Java output code and one or more SQLJ
profiles. A separate profile is generated for each connection context class in
your source code, where a different connection context class is typically used
for each interrelated set of SQL entities that you use in your database
operations.

Generated Java code is put into a . j ava output file, which contains the
following:

« any class definitions and Java code from your . sql j source file

« class definitions created as a result of your SQLJ iterator and connection
context declarations (see "Overview of SQLJ Declarations" on page 3-2)

« aclass definition for a specialized class (known as the profile-keys class) that
SQLJ generates and uses in conjunction with your profiles

« calls to the SQLJ runtime to implement the actions of your embedded SQL
operations

(The SQLJ runtime, in turn, uses the JDBC driver to access the database. See
"SQLJ Runtime" on page 9-16 for more information.)

Generated profiles contain information about all the embedded SQL statements
in your SQLJ source code, such as actions to take, datatypes being manipulated,
and tables being accessed. When your application is run, the SQLJ runtime
accesses the profiles to retrieve your SQL operations and pass them to the JDBC
driver.

By default, profiles are put into . ser serialized resource files, but SQLJ can
optionally convert the . ser filesto. cl ass files as part of the translation.

1-10 SQLJ Developer’s Guide and Reference

Basic Translation Steps and Runtime Processing

5. The JVM invokes the Java compiler, which is usually, but not necessarily, the
standard j avac provided with the Sun Microsystems JDK.

6. The compiler compiles the Java source file generated in step 4 and produces
Java . cl ass files as appropriate. This will include a . cl ass file for each class
you defined, a . cl ass file for each of your SQLJ declarations, and a .. cl ass
file for the profile-keys class.

7. The JVM invokes the Oracle SQLJ customizer or other specified customizer.

8. The customizer customizes the profiles generated in step 4.

Notes:

= SQLJ generates profiles and the profile-keys class only if your
source code includes SQLJ executable statements.

=« When you use the Oracle customizer during translation, your
application will require the Oracle SQLJ runtime and an Oracle
JDBC driver when it runs, even if you do not actually use
Oracle-specific features.

« Thisis avery generic example. It is also possible to specify
pre-existing . j ava files on the command line to be compiled
(and to be available for type resolution as well), or to specify
pre-existing profiles to be customized, or to specify . j ar files
containing profiles to be customized. See "Translator Command
Line and Properties Files" on page 8-2 for more information.

Summary of Translator Input and Output

This section summarizes what the SQLJ translator takes as input, what it produces
as output, and where it puts its output.

Note: This discussion mentions iterator class and connection
context class declarations. Iterators are similar to JDBC result sets;
connection contexts are used for database connections. For more
information about these class declarations, see "Overview of SQLJ
Declarations" on page 3-2.

Overview 1-11

Basic Translation Steps and Runtime Processing

Input

In its most basic operation, the SQLJ translator takes one or more . sql j source files
as input in its command line. The name of your main . sqgl j file is based on the
public class it defines, if it defines one, or else on the first class it defines if there are
no public class definitions. Each public class you define must be in its own . sql |
file.

If your main . sqgl j file defines class MyCl ass, then the source file name must be:

M/Ad ass. sql j

This will also be the file name if there are no public class definitions but MyCl ass is
the first class defined.

When you run SQLJ, you can also specify numerous SQLJ options in the command
line or properties files.

For more information about SQLJ input, including additional types of files you can
specify in the command line, see "Translator Command Line and Properties Files"
on page 8-2.

Output

The translation step produces a Java source file for each . sql j file in your
application, and at least one application profile (presuming your source code uses
SQLJ executable statements).

SQLJ generates source files and profiles as follows:

« Javasource files will be . j ava files with the same base names as your . sql |
files.

For example, MyCl ass. sql j defines class MyCl ass and the translator
produces MyCl ass. j ava.

« The application profile files contain information about the SQL operations of
your SQLJ application. There will be one profile for each connection class that
you use in your application. The profiles will have names with the same base
name as your main . sql j file, plus the following extensions:

_SIProfil e0. ser
_SIProfil el. ser
_SIProfil e2. ser

For example, for MyCl ass. sql j the translator produces:

1-12 SQLJ Developer’s Guide and Reference

Basic Translation Steps and Runtime Processing

M/Ad ass_SIProfil e0. ser

The . ser file extension reflects the fact that the profiles are serialized. The
. ser files are binary files.

Note: There is a translator option, - ser 2cl ass, that instructs the
translator to generate profiles as . cl ass files instead of . ser files.
Other than the file name extension, the naming is the same.

The compilation step compiles the Java source file into multiple class files. There are
at least two class files: one for each class you define in your . sql j source file
(minimum of one), and one for a class, known as the profile-keys class, that the
translator generates and uses with the profiles to implement your SQL operations
(presuming your source code uses SQLJ executable statements). Additional . cl ass
files are produced if you declared any SQLJ iterators or connection contexts (see
"Overview of SQLJ Declarations" on page 3-2). Also, separate . cl ass files will be
produced for any inner classes or anonymous classes in your code.

The . cl ass files are named as follows:

« Theclass file for each class you define consists of the name of the class with the
. ¢l ass extension.

For example: MyCl ass. sql j defines MyCl ass, the translator produces the
MyCl ass. j ava source file, and the compiler produces the MyCl ass. cl ass
class file.

« Theclass that the translator generates is named according to the base name of
your main . sql j file, plus the following:

_SIProfil ekeys

So the class file has the following extension:
_SIProfil ekeys. cl ass
For example, for Myd ass. sql j , the translator together with the compiler
produce:
M/QA ass_SIProfi | eKeys. cl ass
= The translator names iterator classes and connection context classes according

to how you declare them. For example, if you declare an iterator Myl t er, there
will be a Myl ter. cl ass class file.

Overview 1-13

Basic Translation Steps and Runtime Processing

The customization step alters the profiles but produces no additional output.

Note: Itis not necessary to reference SQLJ profiles or the
profile-keys class directly. This is all handled automatically.

Output File Locations

By default, SQLJ places generated . j ava files in the same directory as your . sql |
file. You can specify a different . j ava file location, however, using the SQLJ-di r
option.

By default, SQLJ places generated . cl ass and . ser files in the same directory as
the generated . j ava files. You can specify a different . cl ass and . ser file
location, however, using the SQLJ - d option. This option setting is passed to the
Java compiler so that . cl ass filesand . ser files will be in the same location.

For either the - d or - di r option, you must specify a directory that already exists.
For more information about these options, see "Options for Output Files and
Directories" on page 8-25.

Runtime Processing

When a user runs the application, the SQLJ runtime reads the profiles and creates
"connected profiles", which incorporate database connections. Then the following
occurs each time the application must access the database:

1. SQLJ-generated application code uses methods in a SQLJ-generated
profile-keys class to access the connected profile and read the relevant SQL
operations. There is mapping between SQLJ executable statements in the
application and SQL operations in the profile.

2. The SQLIJ-generated application code calls the SQLJ runtime, which reads the
SQL operations from the profile.

3. The SQLJ runtime calls the JDBC driver and passes the SQL operations to the
driver.

4. The SQLJ runtime passes any input parameters to the JDBC driver.
5. The JDBC driver executes the SQL operations.

6. If any data is to be returned, the database sends it to the JDBC driver, which
sends it to the SQLJ runtime for use by your application.

1-14 SQLJ Developer’'s Guide and Reference

Basic Translation Steps and Runtime Processing

Note: Passing input parameters (step 4) can also be referred to as
"binding input parameters" or "binding host expressions". The
terms host variables, host expressions, bind variables, and bind
expressions are all used to describe Java variables or expressions that
are used as input or output for SQL operations.

Overview 1-15

Alternative Deployment Scenarios

Alternative Deployment Scenarios

This manual mainly discusses writing for client-side SQLJ applications, but you
may find it useful to run SQLJ code in other scenarios:

« froman applet
= inthe server (optionally running the SQLJ translator in the server as well)

= against an Oracle Lite database

Running SQLJ in Applets

Because the SQLJ runtime is pure Java, you can use SQLJ source code in applets as
well as applications. There are, however, a few considerations, as discussed below.

For an example, see "Applet Sample" on page 12-82.

For applet issues that apply more generally to the Oracle JDBC drivers, see the
Oracle8i JDBC Developer’s Guide and Reference, which includes discussion of firewalls
and security issues as well.

General Development and Deployment Considerations
The following general considerations apply to the use of Oracle SQLJ applets.

= You must package all the SQLJ runtime packages with your applet:

sqlj.runtine
sqlj.runtine.ref
sqlj.runtine.profile
sqlj.runtine. profile.ref
sqlj.runtine.error
as well as the following if you used Oracle customization:
oracle.sqlj.runtine
oracle.sqglj.runtine.error
These classes are included with your Oracle installation in the file:
[Gacle Hone]/1i b/ runtinell. zip
« You must specify a pure Java JDBC driver, such as the Oracle JDBC Thin driver,
for your database connection.

= You must explicitly specify a connection context instance for each SQLJ
executable statement in an applet. This is a requirement because you could

1-16 SQLJ Developer’s Guide and Reference

Alternative Deployment Scenarios

conceivably run two SQLJ applets in a single browser and, thus, in the same
JVM. (For information about connections, see "Connection Considerations" on
page 4-8.)

General End User Considerations

When end users run your SQLJ applet, classes in their CLASSPATH may conflict
with classes that are downloaded with the applet.

Oracle, therefore, recommends that end users clear their CLASSPATH before
running the applet.

Java Environment and the Java Plug-in

Here are some additional considerations regarding the Java environment and use of
Oracle-specific features.

SQLJ requires the runtime environment of JDK 1.1.x or higher. Users cannot run
SQLJ applets in browsers employing JDK 1.0.x, such as Netscape Navigator 3.x
and Microsoft Internet Explorer 3.x, without a plug-in or some other means of
using JRE 1.1.x instead of the browser’s default JRE.

One option is to use a Java plug-in offered by Sun Microsystems. For
information, refer to the following Web site:

htt p://ww j avasof t. com product s/ pl ugi n

Some browsers, such as Netscape Navigator 4.x, do not support resource files
with a . ser extension, which is the extension employed by the SQLJ serialized
object files that are used for profiles. The Sun Microsystems Java plug-in,
however, supports . ser files.

Alternatively, if you do not want to use the plug-in, Oracle SQLJ offers the

- ser 2cl ass option to convert . ser filesto. cl ass files during translation.
See "Conversion of .ser File to .class File (-ser2class)" on page 8-56 for more
information.

Applets using Oracle-specific features require the Oracle SQLJ runtime to work.
The Oracle runtime consists of the classes in the SQLJ runtime library file under
oracl e. sql j.*.The Oracle SQLJ runtime library in the runt i me. zi p file

always requires the Java Reflection API (j ava. | ang. ref | ect . *); the runtime
librariesinrunti mell. zi p,runtimel2. zi p,and runti nel2ee. zi p must
use the Reflection API only in the circumstances outlined below. Most browsers

Overview 1-17

Alternative Deployment Scenarios

do not support the Reflection API or impose security restrictions, but Sun’s Java
plug-in provides support for the Reflection API.

Note: The term "Oracle-specific features” refers both to the use of
Oracle type extensions (discussed in Chapter 5, "Type Support")
and the use of SQLJ features that require your application to be
customized to work against an Oracle database (for example, this is
true of the SET statement, discussed in Chapter 3, "Basic Language
Features").

« The following SQLJ language features always require the Java Reflection API
(ava. I ang. ref | ect . *), regardless of the version of the SQLJ runtime you
are using:

the CAST statement

REF-CURSOR-parameters or REF-CURSOR-columns being retrieved from
the database as instances of a SQLJ iterator

retrieval of j ava. sqgl . Ref / St ruct/ Bl ob/ Cl ob objects

retrieval of SQL objects as instances of Java classes implementing the
oracl e. sql . Cust onmDat umor j ava. sql . SQLDat a interfaces

Note: There is an exception to this if you use SQLJ in a mode that
is fully compatible with ISO. That is, if you use SQLJ in an
environment that complies with J2EE and you translate and run
your program with the SQLJrunt i mel2ee. zi p library, and you
employ connection context type maps as specified by 1SO. In this
case, instances of j ava. sql . Ref, Struct, Blob, C ob,and
SQLDat a are being retrieved without the use of reflection.

« Consider using therunti mell. zi p library for your applets. Doing so permits
you to use Oracle-specific features and Oracle-specific customization.

« If your applet does not use any Oracle-specific features, you can distribute it
with a generic SQLJ runtime. To support this, do not customize the applet
during translation. Set - pr of i | e=f al se when you translate the code. (See
"Profile Customization Flag (-profile)" on page 8-54.) You can obtain a generic
SQLJ runtime by removing all classes under or acl e. sqgl j . * from the
runti me. zi p library. If you neglect to set - pr of i | e=f al se, then the default
Oracle customizer will load Oracle-specific runtime classes. This will result in

1-18 SQLJ Developer’'s Guide and Reference

Alternative Deployment Scenarios

your applet requiring the Oracle runtime even though it does not use
Oracle-specific features.

The preceding issues can be summarized as follows, focusing on users with Internet
Explorer and Netscape browsers:

Distribute your applet with therunti mell. zi p and cl asses111. zip
libraries. In this case, the SQLJ and JDBC versions must match. For example, to
use the SQLJ 8.1.7 runtime, you must have the Oracle 8.1.7 JDBC driver.

If you use object types, JDBC 2.0 types, REF CURSORS, or the CAST statement
in your SQLJ statements, then either the browser in which you run must
support JDK 1.1 and permit reflection, or you must run your applet through a
browser Java plug-in.

If your applet does not use Oracle-specific features, then you can compile it
without customization (- pr of i | e=f al se) and distribute it with the generic
SQLJ runtime subset.

Note: For an example of a generic SQLJ applet (not using
Oracle-specific features), see "Applet Sample" on page 12-82.

Introduction to SQLJ in the Server

In addition to its use in client applications, SQLJ code can run within the target
Oracle8i server in stored procedures, stored functions, triggers, Enterprise
JavaBeans, or CORBA objects. Server-side access occurs through an Oracle JIDBC
driver that runs inside the server itself. Additionally, the Oracle8i server has an
embedded SQLIJ translator so that SQLJ source files for server-side use can
optionally be translated directly in the server.

The two main areas to consider, which Chapter 11, "SQLJ in the Server", discusses in
detail are:

creating SQLJ code for use within the server

Coding a SQLJ application for use within the target Oracle8i server is similar to
coding for client-side use. What issues do exist are due to general JDBC
characteristics, as opposed to SQLJ-specific characteristics. The main differences
involve connections:

— You have only one connection.

— The connection is to the database in which the code is running.

Overview 1-19

Alternative Deployment Scenarios

— The connection is implicit (does not have to be explicitly initialized, unlike
on a client).

— The connection cannot be closed—any attempt to close it will be ignored.

Additionally, the JDBC server-side driver used for connections within the server
does not support auto-commit mode.

Note: There is also a server-side Thin driver for connecting to one
server from code that runs in another. This case is effectively the
same as using a Thin driver from a client and is coded in the same
way. See "Overview of the Oracle JDBC Drivers" on page 4-5.

« translating and loading SQLJ code for server-side use

You can translate and compile your code either on a client or in the server. If
you do this on a client, you can then load the class and resource files into the
server from your client machine, either pushing them from the client using the
Oracle | oadj ava utility or pulling them in from the server using SQL
commands. (It is convenient to have them all in asingle . j ar file first.)

Alternatively, you can translate and load in one step, using the embedded
server-side SQLJ translator. If you load a SQLJ source file instead of class or
resource files, then translation and compilation are done automatically. In
general, | oadj ava or SQL commands can be used for class and resource files
or for source files. From a user perspective . sql j files are treated the same as
. j ava files, with translation taking place implicitly.

See "Loading SQLJ Source and Translating in the Server" on page 11-13 for
information about using the embedded server-side translator.

Using SQLJ with an Oracle Lite Database

You can use SQLJ on top of an Oracle Lite database. This section provides a brief
overview of this functionality. For more information, refer to the Oracle Lite Java
Developer’s Guide.

Overview of Oracle Lite and Java Support

Oracle Lite is a lightweight database that offers flexibility and versatility that larger
databases cannot. It requires only 350K to 750K of memory for full functionality,
natively synchronizes with the Palm Computing platform, and can run on Windows

1-20 SQLJ Developer’s Guide and Reference

Alternative Deployment Scenarios

NT (3.51 or higher), Windows 95, and Windows 98. It offers an embedded
environment that requires no background or server processes.

Oracle Lite is compatible with Oracle8i, previous versions of Oracle8, and Oracle7.
It provides comprehensive support for Java, including JDBC, SQLJ, and Java stored
procedures. There are two alternatives for access to the Oracle Lite database from
Java programs:

= native JDBC driver

This is intended for Java applications that use the relational data model,
allowing them direct communication with the object-relational database engine.

Use the relational data model if your program has to access data that is already
in SQL format, must run on top of other relational database systems, or uses
very complex queries.

« Java Access Classes (JAC)

This is intended for Java applications that use either the Java object model or
the Oracle Lite object model, allowing them to access persistent information
stored in the Oracle Lite database, without having to map between the object
model and the relational model. Use of JAC also requires a persistent Java
proxy class to model the Oracle Lite schema. This can be generated by Oracle
Lite tools.

Use the object model if you want your program to have a smaller footprint and
run faster and you do not require the full capability of the SQL language.

There is interoperability between Oracle Lite JDBC and JAC, with JAC supporting
all types that JDBC supports, and JDBC supporting JAC types that meet certain
requirements.

Requirements to Run Java on Oracle Lite

Note the following requirements if you intend to run a Java program on top of an
Oracle Lite database:

« Windows NT 3.51 or higher, Windows 95, or Windows 98

« Oracle Lite 3.0 or higher

« JDK 1.1.xor higher

« Java Runtime Environment (JRE) that supports Java Native Interface (JNI)

The JREs supplied with JDK 1.1.x and higher, Oracle JDeveloper, and Symantec
Visual Cafe support JNI.

Overview 1-21

Alternative Deployment Scenarios

Support for Oracle Extensions

The JDBC driver implemented with Oracle Lite versions 3.6 and prior supports
standard SQL92 types only, so Oracle-specific functionality cannot be used on top of
these versions. Therefore, you cannot use Oracle type extensions, such as BFI LE
and ROW D, and user-defined object and collection types.

Beginning with version 4.0, however, Oracle Lite will include an Oracle-specific
JDBC driver and Oracle-specific SQLJ runtime classes (including the Oracle
semantics-checkers and customizer), allowing use of Oracle-specific features and
type extensions.

1-22 SQLJ Developer’s Guide and Reference

Alternative Development Scenarios

Alternative Development Scenarios

The discussion in this book assumes that you are coding manually in a UNIX
environment for English-language deployment. However, you can use SQLJ on
other platforms and with IDEs. There is also NLS support for deployment to other
languages. This section introduces these topics:

« NLSsupport
« SQLJin IDEs

« Windows considerations

SQLJ NLS Support

Oracle SQLJ support for native languages and character encodings is based on
Java’s built-in NLS capabilities.

The standard user . | anguage and f i | e. encodi ng properties of the JVM
determine appropriate language and encoding for translator and runtime messages.
The SQLJ - encodi ng option determines encoding for interpreting and generating
source files during translation.

For information, see "NLS Support in the Translator and Runtime" on page 9-19.

SQLJ in JDeveloper and Other IDEs

Oracle SQLJ includes a programmatic API so that it can be embedded in integrated
development environments (IDEs) such as Oracle JDeveloper. The IDE takes on a
role similar to that of the sql j script used as a front end in Solaris, invoking the
translator, semantics-checker, compiler, and customizer.

Oracle JDeveloper is a Windows NT-based visual development environment for
Java programming. The JDeveloper Suite enables developers to build multi-tier,
scalable Internet applications using Java across the Oracle Internet Platform. The
core product of the suite—the JDeveloper Integrated Development
Environment—excels in creating, debugging, and deploying component-based
applications.

The JDeveloper Suite includes Oracle JDeveloper, Oracle Application Server,
Oracle8i Enterprise Edition, and Oracle Procedure Builder.

The Oracle JDBC OCI and Thin drivers are included with JDeveloper, as well as
drivers to access an Oracle Lite database.

Overview 1-23

Alternative Development Scenarios

JDeveloper’s compilation functionality includes an integrated Oracle SQLJ
translator so that your SQLJ application is translated automatically as it is compiled.

Information about JDevel oper is available at the following URL:

http://technet. oracl e. com

Windows Considerations
Note the following if you are using a Windows platform instead of Solaris:

This manual uses Solaris/UNIX syntax. Use platform-specific file names and
directory separators (such as "\" on Windows) that are appropriate for your
platform, because your JVM expects file names and paths in the
platform-specific format. This is true even if you are using a shell (such as ksh
on NT) that permits a different file name syntax.

For Solaris, Oracle SQLJ provides a front-end script, sql j , that you use to
invoke the SQLJ translator. On Windows, Oracle SQLJ instead provides an
executable file, sql j . exe. Using a script is not feasible on Windows platforms
because . bat files on these platforms do not support embedded equals signs
(=) in arguments, string operations on arguments, or wildcard characters in file
name arguments.

How to set environment variables is specific to the operating system. There may
also be OS-specific restrictions. In Windows 95, use the Envi r onnment tab in
the Syst emcontrol panel. Additionally, since Windows 95 does not support
the "=" character in variable settings, SQLJ supports the use of "#" instead of "="
in setting SQLJ_OPTI ONS, an environment variable that SQLJ can use for
option settings. Consult your operating system documentation regarding
settings and syntax for environment variables, and be aware of any size
limitations.

As with any operating system and environment you use, be aware of specific
limitations. In particular, the complete, expanded SQLJ command line must not
exceed the maximum command-line size, which is 250 characters for Windows
95 and 4000 characters for Windows NT. Consult your operating system
documentation.

On Windows, it is possible that the SQLJ translation process will suspend
during compilation. If you encounter this problem, use the translator - passes
option, which is discussed in "SQLJ Two-Pass Execution (-passes)" on page 8-70.

Refer to the Windows platform README file for additional information.

1-24 SQLJ Developer’s Guide and Reference

2

Getting Started

This chapter guides you through the basics of testing your Oracle SQLJ installation
and configuration and running a simple application.

Note that if you are using an Oracle database and Oracle JDBC driver, you should
also verify your JDBC installation according to the Oracle8i JDBC Developer’s Guide
and Reference.

This chapter discusses the following topics:
« Assumptions and Requirements
« Checking the Installation and Configuration

« Testing the Setup

Getting Started 2-1

Assumptions and Requirements

Assumptions and Requirements

This section discusses basic assumptions about your environment and requirements
of your system so that you can run Oracle SQLJ.

Assumptions About Your Environment

The following assumptions are made about the system on which you will be
running Oracle SQLJ.

You have a standard Java environment that is operational on your system. This
would typically be using a Sun Microsystems JDK, but other implementations
of Java will work. Make sure you can run Java (typically j ava) and your Java
compiler (typically j avac).

To translate and run Oracle SQLJ applications on a Sun JDK you must use a JDK
1.2.x or 1.1.x version, with an appropriate JDBC driver. There are Oracle JDBC
Thin and OCI drivers for either of these JDK versions.

For more information, see "Supported JDK Versions" on page 2-4.
You can already run JDBC applications in your environment.

If you are using an Oracle database and Oracle JDBC driver, then you should
complete the steps in Chapter 2, "Getting Started", of the Oracle8i JDBC
Developer’s Guide and Reference. You can also refer to Chapter 1, "Overview", of
that document for information about the Oracle JDBC drivers and how to
decide which is appropriate for your situation.

Notes: If you are using a non-Oracle JDBC driver, you must do
the following:

« Modify connect . properti es, as discussed in "Set Up the
Runtime Connection" on page 2-9.

« Modify the sample applications, as discussed in "Driver
Selection and Registration for Runtime" on page 4-7, so that
your driver is registered before the call to the
Oracl e. connect () method.

Requirements for Using Oracle SQLJ

The following are required to use Oracle SQLJ:

2-2 SQLJ Developer’s Guide and Reference

Assumptions and Requirements

a JDBC driver implementing the standard j ava. sql JDBC interfaces from Sun
Microsystems

Oracle SQLJ works with any JDBC driver that complies with standards.
a database system that is accessible using your JDBC driver

class files for the SQLJ translator and SQLJ profile customizer
Translator-related classes are available in the file:

[Gacle Hoe]/sqlj/lib/translator. zip

class files for the SQLJ runtime

Several SQLJ runtime versions are available — you must select a runtime
version that is compatible with your Java environment and JDBC driver (these
areallin[Oracl e Hone]/sqlj/lib).

runti me. zi p—a generic runtime that works with all Oracle JDBC drivers and
with all JDK environments

runti mell. zi p—an Oracle 8.1.7-specific runtime that works under JDK 1.1.x

runti mel2. zi p—an Oracle 8.1.7-specific runtime that works under JDK 1.2 or
higher and provides full SQLJ ISO functionality

runti mel2ee. zi p—an Oracle 8.1.7-specific runtime that works in an
environment that complies with J2EE and provides full SQLJ ISO functionality

Important: In SQLJ release 8.1.6 and earlier, r unt i ne. zi p was a
subset of transl ator. zi p. Thisis no longer the case. You must
now specify runti me. zi p aswellast ransl at or. zi p in your
CLASSPATH.

Getting Started 2-3

Assumptions and Requirements

Notes:

« Ifyou will be running only SQLJ applications that have already
been translated, compiled, and customized, then you will not
needt ransl at or. zi p.

« Thetranslator.zipandruntimeXXX zip filesare
uncompressed for maximum portability.

Supported JDK Versions

If you are using a Sun Microsystems JDK, note that Oracle SQLJ release 8.1.7 works
in both the JDK 1.2.x and JDK 1.1.x environments. You can use t r ansl at or . zi p
in conjunction with r unt i me. zi p to work in either environment. Or, if you are
employing the Oracle JDBC 8.1.7 driver, you can use t r ansl at or . zi p with one of
therunti mell. zi p,runtimel2. zi p,orrunti nel2ee. zi p files, depending on
whether your Java environment supports JDK 1.1.x, JDK 1.2, or J2EE.

Note the following regarding migration of SQLJ source code:

« Ifyou translate under JDK 1.1.x, Oracle supports running the application under
either IDK 1.1.x or JDK 1.2.x. (This assumes that you do not have any JDBC
code that uses the or acl e. j dbc2 package. This is how Oracle JDBC
supported JDBC 2.0 types under JDK 1.1.x.)

« Ifyou translate under JDK 1.2.x, Oracle supports running the application under
JDK 1.2.x.

Be sure to use an appropriate version of the JDBC driver. See "PATH and
CLASSPATH for Oracle JDBC" on page 2-6.

Note that as of release 8.1.7, neither Oracle SQLJ nor Oracle JDBC support JDK 1.0.2.
This includes applets running in browsers that use JDK 1.0.2 except where special
preparations have been made. (This chapter does not discuss applets. Refer to
"Running SQLJ in Applets" on page 1-16.)

JServer Configuration

This guide presumes that system configuration issues are outside the duties of most
SQLJ developers. Therefore, configuration of the Oracle8i JServer (formerly known
as the Java Option) is not covered here. For information about setting Java-related

2-4 SQLJ Developer's Guide and Reference

Assumptions and Requirements

configuration parameters (such as JAVA_POOL_SI ZE), see the Oracle8i Java
Developer’s Guide.

If you need information about configuring the multi-threaded server, dispatcher, or

listener (which may be particularly relevant if you are coding Enterprise JavaBeans
or CORBA objects), see the Net8 Administrator’s Guide.

Getting Started 2-5

Checking the Installation and Configuration

Checking the Installation and Configuration

Once you have verified that the above assumptions and requirements are satisfied,
you must check your Oracle SQLJ installation.

Check for Installed Directories and Files
Verify that the following directories have been installed and are populated.

Directories for Oracle JDBC

If you are using one of the Oracle JDBC drivers, refer to the Oracle8i JDBC
Developer’s Guide and Reference for information about JDBC files that should be
installed on your system.

Directories for Oracle SQLJ

Installing the Oracle JServer will include, among other things, under your [Or acl e
Hone] directory asql j directory containing the following subdirectories:

« denp (demo applications, including some referenced in this chapter)
« doc
« |ib(. zipfilescontaining class files for SQLJ)

In addition, directly under [Or acl e Hone] is the following directory, containing
utilities for all Java product areas:

« bin

Check that all these directories have been created and populated, especially | i b
and bi n.

Set the PATH and CLASSPATH

Make sure your PATHand CLASSPATH environment variables have the necessary
settings for Oracle SQLJ (and Oracle JDBC if applicable).

PATH and CLASSPATH for Oracle JDBC

If you are using one of the Oracle JDBC drivers, you will need the Oracle JDBC
classes ZIP file that is appropriate for your environment.

2-6 SQLJ Developer's Guide and Reference

Checking the Installation and Configuration

JDK 1.1.x-compatible classes are in cl asses111. zi p; JDK 1.2.x-compatible classes
are incl asses12. zi p. Presuming you use a Sun Microsystems JDK environment,
make sure the appropriate ZIP file name is in your CLASSPATH setting.

For more information about required PATHand CLASSPATH settings for Oracle
JDBC, refer to the Oracle8i JDBC Developer’s Guide and Reference.

PATH and CLASSPATH for Oracle SQLJ
Set your PATH and CLASSPATH variables as follows for Oracle SQLJ:

PATH Setting To be able to run the sqgl j script (which invokes the SQLJ translator)
without having to fully specify its path, verify that your PATHenvironment variable
has been updated to include the following:

[Gacl e Hone] / bin

Use backward slashes for Windows. Replace [Or acl e Hone] with your actual
Oracle Home directory.

CLASSPATH Setting Update your CLASSPATH environment variable to include the
current directory as well as the following:

[Gacle Hone]/sqlj/lib/translator. zip

Use backward slashes for Windows. Replace [Or acl e Hone] with your actual
Oracle Home directory.

In addition, you must include one of the following runtime libraries in your
CLASSPATH:

[Gacle Hoe]/sqlj/lib/runtine. zip
[Gacle Hoe]/sqlj/lib/runtimell. zip
[Gacle Hoe]/sqlj/lib/runtimel2. zip
[Gacl e Hone]/sqlj/libl/runtinel2ee. zip

If you are unsure about which runtime library you should use, you may want to
specify runt i me. zi p. This provides you with the highest flexibility across
different Java and JDBC environments. However, if you require SQLJ ISO-compliant
support for JDBC 2.0 types, such asj ava. sql . Ref , Cl ob, Bl ob, St ruct, and

Getting Started 2-7

Checking the Installation and Configuration

SQLDat a, you must use either runti nel12. zi p orrunti nel2ee. zi p in
conjunction with JDK1.2 or J2EE and the Oracle JDBC 8.1.7 drivers.

Important: You will not be able to run the SQLJ translator if you
do not add a runtime library.

You must specify arunti me. zi p fileaswellastransl ator. zi p
in your CLASSPATH.

Verify Installation of sqgljutl Package

Note: This step is relevant only to online translation, not offline
translation or application runtime, and is applicable only if you are
using the following:

« apre-8.1.5 Oracle database, or an 8.1.5 and later database that
was installed without a server-side JavaVM

« SQLJstored procedures or functions

The package sql j ut | is required for online checking of stored procedures and
functions in an Oracle database. For Oracle release 8.1.5 and later, it should have
been installed automatically under the SYS schema during installation of your
database’s server-side JavaVM. To verify the installation of sql j ut | , issue the
following SQL command (from SQL* Pl us, for example):

descri be package sqljutl
This should result in a brief description of the package. If you get a message

indicating that the package cannot be found, then you must install it manually. To
do so, use SQL* Pl us to run the sql j ut | . sqgl script, which is located as follows:

[Gacle Hoe]/sqlj/libl/sqljutl.sql

Consult your installation instructions if necessary.

2-8 SQLJ Developer's Guide and Reference

Testing the Setup

Testing the Setup

You can test your database, JDBC, and SQLJ setup using demo applications defined
in the following source files:

« Testlnstall CreateTable.java
« TestlnstallJDBC. java

« Testlnstall SQ.J. sql |

« Testlnstall SQLIChecker. sql]j

There is also a Java properties file, connect . properti es, that helps you set up
your database connection. You must edit this file to set appropriate user, password,
and URL values.

These demo applications are provided with your SQLJ installation in the denp
directory:

[Cacl e Hone] / sql j / denmo

You must edit some of the source files as necessary and translate and/or compile
them as appropriate (as explained in the following subsections).

The demo applications provided with the Oracle SQLJ installation refer to tables on
a database account with user name scott and password t i ger. Most Oracle
installations have this account. You can substitute other values for scot t and

ti ger if desired.

Note: Running the demo applications requires that the deno
directory be the current directory and that the current directory
(". ") be in your CLASSPATH, as described earlier.

Set Up the Runtime Connection

This section describes how to update the connect . properti es file to configure
your database connection for runtime. The file is in the deno directory and looks
something like the following:

Wsers shoul d uncomnment one of the foll owing URLs or add their own.
(If using Thin, edit as appropriate.)

#sqlj . url 5 dbc: oracl e: t hi n: @ocal host : 1521: CROL

#sqlj . url 5 dbc: oracl e: oci 8: @

#sqlj.url 5 dbc: oracl e: oci 7: @

#

Getting Started 2-9

Testing the Setup

Wser nane and password here
sql j . user=scott
sql j . passwor d=t i ger

(User scot t and password ti ger are used for the demo applications.)

There is also a listing of connect . properti es in "Runtime Connection Properties
File" on page 12-2.

Connecting with an Oracle JDBC Driver
If you are using a JDBC OCI driver (OCI8 or OCI7), then uncomment the oci 8 URL
line or the oci 7 URL line, as appropriate, in the connect . properti es file.

If you are using the JDBC Thin driver, then uncomment the t hi n URL line in
connect . properti es and edit it as appropriate for your database connection.
Use the same URL that was specified when your JDBC driver was set up.

Connecting with anon-Oracle JDBC Driver

If you are using a non-Oracle JDBC driver, then add a line to
connect . properti es to set the appropriate URL, as follows:

sqlj.url=your UR. here

Use the same URL that was specified when your JDBC driver was set up.

You must also register the driver explicitly in your code (this is performed
automatically in the demo and test programs if you use an Oracle JDBC driver). See
"Driver Selection and Registration for Runtime" on page 4-7.

Create a Table to Verify the Database

The following tests assume a table called SALES. If you compile and run

Test | nst al | Cr eat eTabl e as follows, it will create the table for you if the
database and your JDBC driver are working and your connection is set up properly
in the connect . properti es file:

javac Testlnstall OreateTabl e.j ava
java TestInstal | O eateTabl e

2-10 SQLJ Developer’s Guide and Reference

Testing the Setup

Note: If you already have a table called SALES in your schema
and do not want it altered, edit

Test I nstal | Creat eTabl e. j ava to change the table name.
Otherwise, your original table will be dropped and replaced.

If you do not want to use Test | nst al | Cr eat eTabl e, you can instead create the
SALES table using the following command in a database command-line processor
(such as SQL* Pl us):
CREATE TABLE SALES (

| TEM NUMBER NUMBER

| TEM NAME GHAR(30),

SALES DATE DATE,

Q5T NUMBER

SALES REP NUMBER NUMBER

SALES REP_NAME CHAR(20));

Verify the JDBC Driver
If you want to further test the Oracle JDBC driver, use the Test | nst al | JDBC
demo.

Verify that your connection is set up properly in connect . properties as
described above, then compile and run Test | nst al | JDBC.

javac Testlnstal | JOBC j ava
java TestlnstallJDBC

The program should print:
Hel 1o, JDBA

Verify the SQLJ Translator and Runtime

Now translate and run the Test | nst al | SQLJ demo, a SQLJ application that has
similar functionality to Test | nst al | JDBC. Use the following command to

translate the source:
sqlj Testlnstall SQJ.sql]j

Getting Started 2-11

Testing the Setup

After a brief wait you should get your system prompt back with no error output.
Note that this command also compiles the application and customizes it to use an
Oracle database.

On Solaris, the sql j scriptisin[Oracl e Hone]/ bi n, which should already be in
your PATH as described above. (On Windows, use the sql j . exe executable in the
bi n directory.) The SQLJt r ansl at or . zi p file has the class files for the SQLJ
translator and runtime, is located in [Oracl e Home]/sqlj/1i b, and should
already be in your CLASSPATH as described above.

Now run the application:
java Testlnstall SQJ

The program should print:
Hel o, SQJ!

Verify the SQLJ Translator Connection to the Database

If the SQLJ translator is able to connect to a database, then it can provide online
semantics-checking of your SQL operations during translation. The SQLJ translator
is written in Java and uses JDBC to get information it needs from a database
connection that you specify. You provide the connection parameters for online
semantics-checking using the sqgl j script command line or using a SQLJ properties
file (called sql j . properti es by default).

While still in the deno directory, edit the file sql j . properti es and update,
comment, or uncomment the sql j . password,sqlj.url,andsqlj.driver
lines, as appropriate, to reflect your database connection information, as you did in
connect . properti es. For some assistance, see the comments in the

sql j . properti es file.

Following is an example of what the appropriate driver, URL, and password
settings might be if you are using the Oracle JDBC OCI8 driver (the user name will
be discussed next):

sqlj.url =jdbc: oracl e: oci 8: @
sqlj.driver=oracle.jdbc.driver.Qacl elxi ver
sql j . passwor d=t i ger

Online semantics-checking is enabled as soon as you specify a user name for the
translation-time database connection. You can specify the user name either by
uncommenting the sqgl j . user lineinthesql j. properti es file or by using the
- user command-line option. (The user, password, URL, and driver options all can

2-12 SQLJ Developer’s Guide and Reference

Testing the Setup

be set either on the command line or in the properties file. This is explained in
"Connection Options" on page 8-30.)

You can test online semantics-checking by translating the file
Test I nstal | SQLIChecker. sqglj (located in the deno directory) as follows (or
using another user name if appropriate):

sqlj -user=scott Testlnstall SQJChecker. sql j

This should produce the following error message if you are using one of the Oracle
JDBC drivers:

Test I nstal | SQQIChecker.sqlj:41: Wrning: Uhabl e to check SQL query. Error

returned by database is: CRA-00904: invalid col um nane

Edit Test I nst al | SQLIChecker. sqgl j to fix the error on line 41. The column
name should be | TEM_NAME instead of | TEM_NAMAE. Once you make this change,
you can translate and run the application without error using the following
commands:

sqlj -user=scott Testlnstall SQJChecker. sqlj
java Testlnstal | SQ JChecker

If everything works, this prints:
Hel 1o, SQJ Checker!

Getting Started 2-13

Testing the Setup

2-14 SQLJ Developer’s Guide and Reference

3

Basic Language Features

This chapter discusses basic SQLJ language features and constructs that you use in
coding your application.

SQLJ statements always begin with a #sqgl token and can be broken into two main
categories: 1) declarations, used for creating Java classes for iterators (similar to
JDBC result sets) or connection contexts (designed to help you strongly type your
connections according to the sets of SQL entities being used); and 2) executable
statements, used to execute embedded SQL operations.

For more advanced topics, see Chapter 7, "Advanced Language Features".

This chapter discusses the following topics.

Overview of SQLJ Declarations

Overview of SQLJ Executable Statements

Java Host Expressions, Context Expressions, and Result Expressions
Single-Row Query Results—SELECT INTO Statements

Multi-Row Query Results—SQLJ Iterators

Assignment Statements (SET)

Stored Procedure and Function Calls

Basic Language Features 3-1

Overview of SQLJ Declarations

Overview of SQLJ Declarations

A SQLJ declaration consists of the #sql token followed by the declaration of a class.
SQLJ declarations introduce specialized Java types into your application. There are
currently two kinds of SQLJ declarations, iterator declarations and connection context
declarations, defining Java classes as follows:

Iterator declarations define iterator classes. Iterators are conceptually similar to
JDBC result sets and are used to receive multi-row query data. An iterator is
implemented as an instance of an iterator class.

Connection context declarations define connection context classes. Each
connection context class is typically used for connections whose operations use
a particular set of SQL entities (tables, views, stored procedures, and so on).
That is to say, instances of a particular connection context class are used to
connect to schemas that include SQL entities with the same names and
characteristics. SQLJ implements each database connection as an instance of a
connection context class.

In any iterator or connection context declaration, you may optionally include the
following clauses:

i mpl ement s clause—Specifies one or more interfaces that the generated class
will implement.

wi t h clause—Specifies one or more initialized constants to be included in the
generated class.

These are described in "Declaration IMPLEMENTS Clause" on page 3-5and in
"Declaration WITH Clause" on page 3-6.

Rules for SQLJ Declarations

SQLJ declarations are allowed in your SQLJ source code anywhere that a class
definition would be allowed in standard Java. The only limitation is that you cannot
have a declaration inside a method block under JDK 1.1.x. For example:

SQJ decl arationm, |/ CK (top |evel scope)

class Quter

{

SQJ decl aration, /1 K (class |evel scope)

cl ass | nner

{
SQJ decl aration; |/ K (nested cl ass scope)

3-2 SQLJ Developer’'s Guide and Reference

Overview of SQLJ Declarations

}
voi d func()
{
SQJ declaration;, /| Kin JDK 1.2.x; ILLEGAL in JOK 1.1.x (nethod bl ock)
}

Note: As with standard Java, any public class should be declared
in one of the following ways (this is a requirement if you are using
the standard j avac compiler provided with the Sun Microsystems
IDK):

« Declare it in a separate source file. The base name of the file
should be the same as the class name.

or:

« Declare it at class-level scope or nested-class-level scope. In this
case, it may be advisable to use publ i ¢ st ati ¢ modifiers.

Iterator Declarations

An iterator declaration creates a class that defines a kind of iterator for receiving
query data. The declaration will specify the column types of the iterator instances,
which must match the column types being selected from the database table.

Basic iterator declarations use the following syntax:

#sgl <nodifiers> iterator iterator_classname (type decl arations);

Modifiers are optional and can be any standard Java class modifiers such as
public,stati c, etc. Type declarations are separated by commas.

There are two categories of iterators—named iterators and positional iterators. For
named iterators, you specify column names and types; for positional iterators, you
specify only types.

The following is an example of a named iterator declaration:

#sgl public iterator Enplter (String enane, double sal);

This statement results in the SQLJ translator creating a public Enpl t er class with a
St ri ng attribute enane and a doubl e attribute sal . You can use this iterator to

Basic Language Features 3-3

Overview of SQLJ Declarations

select data from a database table with corresponding employee name and salary
columns of matching names (ENAME and SAL) and datatypes (CHAR and NUMBER).

Declaring Enpl t er as a positional iterator, instead of a named iterator, would be
done as follows:

#sgl public iterator Enplter (String, double);

For more information about iterators, see "Multi-Row Query Results—SQLJ
Iterators” on page 3-35.

Connection Context Declarations

A connection context declaration creates a connection context class, whose instances
are typically used for database connections that use a particular set of SQL entities.

Basic connection context declarations use the following syntax:

#sql <nodi fiers> context context_cl assnang

As for iterator declarations, modifiers are optional and can be any standard Java
class modifiers. The following is an example:

#sqgl public context M/Gontext;

As a result of this statement, the SQLJ translator creates a public MyCont ext class.
In your SQLJ code you can use instances of this class to create database connections
to schemas that include a desired set of entities, such as tables, views, and stored
procedures. Different instances of MyCont ext might be used to connect to different
schemas, but each schema might be expected, for example, to include an EMP table,
a DEPT table, and a TRANSFER_EMPLOYEE stored procedure.

Declared connection context classes are an advanced topic and are not necessary for
basic SQLJ applications that use only one interrelated set of SQL entities. In more
basic scenarios, you can use multiple connections by creating multiple instances of
thesqlj.runtine.ref. Defaul t Cont ext class, which does not require any
connection context declarations.

See "Connection Considerations" on page 4-8 for an overview of connections and
connection contexts.

For information about creating additional connection contexts, see "Connection
Contexts" on page 7-2.

3-4 SQLJ Developer’'s Guide and Reference

Overview of SQLJ Declarations

Declaration IMPLEMENTS Clause

When you declare any iterator class or connection context class, you can specify one
or more interfaces to be implemented by the generated class. This is an advanced
topic, however, and is probably not of interest to most developers.

Use the following syntax for an iterator class:

#sql <nodifiers> iterator iterator_classname inplenments intfcl, ..., intfcN
(type decl arations);

The portioni npl ements intfcl,..., intfcNisknownastheinplenents
clause. Note that in an iterator declaration, the i npl enent s clause precedes the
iterator type declarations.

Here is the syntax for a connection context declaration:

#sgl <nodifiers> context context_classnane inpl enents intfcl,..., intfcN

The i npl ement s clause is potentially useful in either an iterator declaration or a
connection context declaration, but is more likely to be useful in iterator
declarations—particularly in implementing sql j . runti me. Scr ol | abl e or
sqlj . runtime. For Updat e. Scrollable iterators are supported in Oracle SQLJ;
positioned updates or deletes are not currently supported.

For more information about the i npl enent s clause, see "Use of the IMPLEMENTS
Clause in Iterator Declarations" on page 7-26 and "Use of the IMPLEMENTS Clause
in Connection Context Declarations" on page 7-10.

Note: The SQLJi npl enent s clause corresponds to the Java
i mpl ement s clause.

The following example uses an i npl enent s clause in declaring a named iterator
class (presume you have created a package, mypackage, thatincludes an iterator
interface, Myl ter I nt f ¢).

#sgl public iterator M/lter inplenments nypackage. Miterintfc
(String enane, int enpno);

The declared class Myl t er will implement the mypackage. Myl terlntfc
interface.

This next example declares a connection context class that implements an interface
named MyConnCt xt | nt f ¢ (presume it, too, is in the package nypackage).

Basic Language Features 3-5

Overview of SQLJ Declarations

#sqgl public context M/Gontext inpl enents nypackage. MyGonnQ xt | ntfc;

Declaration WITH Clause

In declaring any iterator class or connection context class, you can specify and
initialize one or more constants to be included in the definition of the generated
class. The constants that are produced are always publ i c static final.Usethe
following syntax for an iterator class:

#sql <nodifiers> iterator iterator_classname with (varl=val uel,..., varNval ueN
(type decl arations);

The portionwi t h (var 1=val uel, ..., varN=val ueN is knownasthew t h
clause. Note that in an iterator declaration, the wi t h clause precedes the iterator
type declarations.

Where there is both awi t h clause and an i npl enent s clause, the i npl ement s
clause must come first. Note that parentheses are used to enclose wi t h lists, but not
i mpl enent s lists.

Here is the syntax for a connection context declaration:

#sql <nodi fiers> context context_classnane with (varl=val uel, ..., varNeval ueN;

The following example uses a wi t h clause in declaring a named iterator.

#sqgl public context M/Context with (typeMp="MPack. MQA ass");

The declared class My Cont ext will define the attribute t ypeMap that will be
public static final ofthetypeString and initialized to the value
"M/Pack. M/d ass". This value is the fully qualified class name of a

Li st Resour ceBundl e implementation that provides the mapping between SQL
and Java types for statements executed on instances of the My Cont ext class.

Here is another example (see below for the note about sensi ti vi ty):
#sgl public iterator M/Asensitivelter with (sensitivity=ASENS Tl VE)
(String enane, int enpno);
This declaration sets the cursor sensi ti vi t y to ASENSI Tl VE for a named iterator
class (but sensi ti vi ty is not supported in the Oracle8i database).

The following example uses both an i npl enent s clause and awi t h clause (see the
following note about hol dabi | i ty).

#sqgl public context M/Gontext inpl ements sqlj.runtine.Scrollable

3-6 SQLJ Developer’'s Guide and Reference

Overview of SQLJ Declarations

with (holdability=true) (String enange, int enpno);

The i npl enent s clause must precede the wi t h clause.

This declaration implements the interface sql j . runti ne. Scrol | abl e and enables the
cursor hol dabi | i ty for a named iterator class (but hol dabi | i ty, as with
sensi tivity, is not currently meaningful to an Oracle8i database).

The following standard constants on iterator declarations are not supported in
Oracle SQLJ. They mostly involve cursor states and can take only particular values,
as follows:

« sensitivity (SENSI TI VE/ASENSI Tl VE/I NSENSI TI VE)
« holdability (true/fal se)
« returnability (true/false)

« updat eCol ums (a St ri ng literal containing a comma-separated list of
column names)

An iterator declaration with a wi t h clause that specifies updat eCol unms must
also have an i npl ement s clause that specifies the sql j . runti me. For Updat e
interface.

Oracle SQLJ supports the following standard constants on connection context
declarations.

« typeMap(asString literal defining the name of a type map properties
resource)

« dataSource(asString literal defining the name under which a Dat aSour ce
is looked up inthel ni ti al Cont ext)

The following standard constants on connection context declarations are not
supported in Oracle SQLJ.

« path (asString literal defining the name of a type map properties resource)

« transfornmGroup (asString literal defining the name of a SQL
transformation group that may be applied to SQL types)

Basic Language Features 3-7

Overview of SQLJ Declarations

Note: A predefined set of standard SQLJ constants can be defined
inawi t h clause; however, not all of these constants are meaningful
to an Oracle8i database or to the Oracle SQLJ runtime. Attempts to
define constants other than the standard constants (as in the
example above) is legal with an Oracle8i database, but may not be
portable to other SQLJ implementations and will generate a
warning if you have the - war n=por t abl e flag enabled. (For
information about this flag, see "Translator Warnings (-warn)" on
page 8-42.)

3-8 SQLJ Developer’'s Guide and Reference

Overview of SQLJ Executable Statements

Overview of SQLJ Executable Statements

A SQLJ executable statement consists of the #sql token followed by a SQLJ clause,
which uses syntax that follows a specified standard for embedding executable SQL
statements in Java code. The embedded SQL operation of a SQLJ executable
statement can be any SQL operation supported by your JDBC driver (such as DML,
DDL, and transaction control).

Rules for SQLJ Executable Statements
A SQLJ executable statement must follow these rules:

« Itis permitted in Java code wherever Java block statements are permitted (in
other words, it is permitted inside method definitions and static initialization
blocks).

« Itsembedded SQL operation must be enclosed in curly braces: {. . . }.

Notes:

« Itis recommended that you not close the SQL operation with a
semi-colon. The parser will detect the end of the operation
when it encounters the closing curly brace of the SQLJ clause.

« Everything inside the curly braces of a SQLJ executable
statement is treated as SQL syntax and must follow SQL rules,
with the exception of Java host expressions (which are
described in "Java Host Expressions, Context Expressions, and
Result Expressions” on page 3-15).

» During examination of SQL operations, only DML operations
(such as SELECT, UPDATE, | NSERT, and DELETE) can be parsed
and checked for syntax and semantics by the SQLJ translator
using a database connection. DDL operations (such as
CREATE. . .,or ALTER. . .), transaction-control operations
(such as COMM T and ROLLBACK), or any other kinds of SQL
operations cannot.

SQLJ Clauses

A SQLJ clause is the executable part of a statement (everything to the right of the
#sql token). This consists of embedded SQL inside curly braces, preceded by a Java
result expression if appropriate (such asr esul t below):

Basic Language Features 3-9

Overview of SQLJ Executable Statements

#sgl { SQ operation };

#sgl result = { SQ@ operation};

/] For a statenment with no output, |ike | NSERT

/] For a statement with output, |ike SEHLECT

A clause without a result expression, such as in the first example, is known as a
statement clause. A clause that does have a result expression, such as in the second
example, is known as an assignment clause.

A result expression can be anything from a simple variable that takes a
stored-function return value, to an iterator that takes several columns of data from a

multi-row SELECT.

A SQL operation in a SQLJ statement can use standard SQL syntax only, or can use
a clause with syntax specific to SQLJ (see Table 3—-1 and Table 3-2 below).

For reference, Table 3-1 lists supported SQLJ statement clauses, and Table 3-2 lists
supported SQLJ assignment clauses. Details of how to use the various kinds of
clauses are discussed elsewhere, as indicated. The two entries in Table 3-1 are
general categories for statement clauses that use standard SQL syntax or Oracle
PL/SQL syntax, as opposed to SQLIJ-specific syntax.

Table 3-1 SQLJ Statement Clauses

Category

Functionality

More Information

SELECT | NTOclause

FETCHclause

COW T clause

ROLLBACK clause

SET TRANSACTI ON
clause

procedure clause

assignment clause

Select data into Java host
expressions.

Fetch data from a
positional iterator.

Commit changes to the
database.

Cancel changes to the
database.

Use advanced
transaction control for
access mode and
isolation level.

Call a stored procedure.

Assign values to Java
host expressions.

3-10 SQLJ Developer’s Guide and Reference

"Single-Row Query Results—SELECT
INTO Statements" on page 3-32

"Using Positional Iterators" on page 3-44

"Using Manual COMMIT and
ROLLBACK" on page 4-30

"Using Manual COMMIT and
ROLLBACK" on page 4-30

"Advanced Transaction Control" on
page 7-32

"Calling Stored Procedures" on page 3-57

"Assignment Statements (SET)" on
page 3-55

Overview of SQLJ Executable Statements

Table 3-1 SQLJ Statement Clauses (Cont.)

Category Functionality More Information

SQL clause Use standard SQL syntax Oracle8i SQL Reference
and functionality:
SELECT, UPDATE,
| NSERT, DELETE.

PL/SQL block Use BEGIN...END "PL/SQL Blocks in Executable
anonymous block inside Statements” on page 3-13

SQLJ statement. PL/SQL User’s Guide and Reference

Table 3-2 SQLJ Assignment Clauses

Category Functionality More Information

query clause Select data into a SQLJ "Multi-Row Query Results—SQLJ
iterator. Iterators" on page 3-35

function clause Call a stored function. "Calling Stored Functions" on page 3-58

iterator conversion Convert a JDBC result set "Converting from Result Sets to Named

clause to a SQLJ iterator. or Positional Iterators" on page 7-41

Note: A SQLJ statement is referred to by the same name as the
clause that makes up the body of that statement. For example, an
executable statement consisting of #sql followed by a SELECT

I NTOclause is referred to as a SELECT | NTOstatement.

Specifying Connection Context Instances and Execution Context Instances

If you have defined multiple database connections and want to specify a particular
connection context instance for an executable statement, use the following syntax:

#sqgl [conn_context_instance] { SQ operation };

"Connection Considerations" on page 4-8 discusses connection context instances.

If you have defined one or more execution context instances and want to specify one
of them for use with an executable statement, use the following syntax (similar to
that for connection context instances):

#sqgl [exec_context_instance] { SQ operation };

Basic Language Features 3-11

Overview of SQLJ Executable Statements

You can use an execution context instance to provide status or control of the SQL
operation of a SQLJ executable statement. (This is an advanced topic.) For example,
you can use execution context instances in multithreading situations where multiple
operations are occurring on the same connection. See "Execution Contexts" on

page 7-15 for information.

You can also specify both a connection context instance and an execution context
instance:

#sqgl [conn_cont ext_i nstance, exec _context_instance] { SQ operation};

Notes:

= Include the square brackets around connection context
instances and execution context instances—they are part of the
syntax.

« If you specify both a connection context instance and an
execution context instance, the connection context instance
must come first.

Executable Statement Examples

Examples of elementary SQLJ executable statements appear below. More
complicated statements are discussed later in this chapter.

Elementary INSERT

The following example demonstrates a basic | NSERT. The statement clause does not
require any syntax specific to SQLJ.

Consider a subset of the standard EMP table:

CREATE TABLE BWP (
ENAME VARCHARY(10) ,
SAL NOMBER(7,2));

Use the following SQLJ executable statement (that uses only standard SQL syntax)
to insert Joe as a new employee into the EMP table, specifying his name and salary.

#sgl{ INSERT INTO emp (ename, sal) VALUES (Joe’, 43000) };

3-12 SQLJ Developer’s Guide and Reference

Overview of SQLJ Executable Statements

Elementary INSERT with Connection Context or Execution Context Instances

The following examples use ct x as a connection context instance (an instance of
either the defaultsqgl j . runt i me. r ef . Def aul t Cont ext or a class that you have
previously declared in a connection context declaration) and execct x as an
execution context instance:

#sql [ctX]{ INSERT INTO emp (ename, sal) VALUES (Joe’, 43000) };
#sql [execct] { INSERT INTO emp (ename, sal) VALUES (Joe’, 43000) };

#sq [ctx, execct] { INSERT INTO emp (ename, sal) VALUES (‘Joe’, 43000) };

A Simple SQLJ Method

This example demonstrates a simple method using SQLJ code, demonstrating how
SQLJ statements interrelate with and are interspersed with Java statements. The
SQLJ statement uses standard | NSERT | NTO t abl e VALUES syntax supported by
Oracle SQL. The statement also uses Java host expressions, marked by colons (:), to
define the values. (Host expressions are used to pass data between your Java code
and SQL instructions. They are discussed in "Java Host Expressions, Context
Expressions, and Result Expressions" on page 3-15.)

public static void writeSalesData (intf] temNums, String[] itemNames)
throws SQLEXxception
{
for (inti =0; i < temNums.length; i++)
#s0{INSERT INTO sales VALUES(:(itemNumsfi]), :(temNamesli)), SYSDATE) };
}

Notes:

« Thethrows SQ.Excepti on isrequired. For information
about exception-handling, see "Exception-Handling Basics" on
page 4-23.

« SQLIJ function calls also use a VALUES token, but these
situations are not related semantically.

PL/SQL Blocks in Executable Statements

PL/SQL blocks can be used within the curly braces of a SQLJ executable statement
just as SQL operations can, as in the following example:

Basic Language Features 3-13

Overview of SQLJ Executable Statements

#sqgl {
CEQLARE
n NUMBER
BEG N
n:=1;
VWH LE n <= 100 LQCP
I NSERT | NTO enp (enpno) VALUES(2000 + n);
n:=n+1;
END LOCP,
END

h

This example goes through a loop that inserts new employees in the EMP table,
creating employee numbers 2001-2100. (It presumes data other than the employee
number will be filled in later.)

Simple PL/SQL blocks can also be coded in a single line:
#sql { <DEQLARE ...> BEGAN... B\D };

Notes:

« Itisrecommended that you not close a PL/SQL block with a
semi-colon after the END. The parser will detect the end of the
block when it encounters the closing curly brace of the SQLJ
clause.

« Remember that using PL/SQL in your SQLJ code would
prevent portability to other platforms, because PL/SQL is
Oracle-specific.

« Asan alternative to using JDBC for dynamic SQL, you can use
PL/SQL anonymous blocks within SQLJ statements. See
"PL/SQL in SQLJ for Dynamic SQL—DynamicDemo.sqlj" on
page 12-67 for a sample.

3-14 SQLJ Developer’s Guide and Reference

Java Host Expressions, Context Expressions, and Result Expressions

Java Host Expressions, Context Expressions, and Result Expressions

There are three categories of Java expressions used in SQLJ code: host expressions,
context expressions, and result expressions. Host expressions are the most frequently
used and merit the most discussion.

SQLJ uses Java host expressions to pass arguments between your Java code and
your SQL operations. This is how you pass information between Java and SQL.

Host expressions are interspersed within the embedded SQL operations in SQLJ
source code.

The most basic kind of host expression, consisting of only a Java identifier, is
referred to as a host variable.

A context expression specifies a connection context instance or execution context
instance to be used for a SQLJ statement.

A result expression specifies an output variable for query results or a function
return.

(Result expressions and the specification of connection context instances and
execution context instances were first introduced in "Overview of SQLJ Executable
Statements” on page 3-9.)

Overview of Host Expressions

Any valid Java expression can be used as a host expression. In the simplest case,
which is typical, the expression consists of just a single Java variable. Other kinds of
host expressions include: arithmetic expressions, Java method calls with return
values, Java class field values, array elements, conditional expressions(a ? b :

c), logical expressions, or bitwise expressions.

Java identifiers used as host variables or in host expressions can represent any of the
following:

« local variables

« declared parameters

« class fields (such asnycl ass. nyfi el d)
« static or instance method calls

Local variables used in host expressions can be declared anywhere that other Java
variables can be declared. Fields can be inherited from a superclass.

Basic Language Features 3-15

Java Host Expressions, Context Expressions, and Result Expressions

Java variables that are legal in the Java scope where the SQLJ executable statement
appears can be used in a host expression in a SQL statement, presuming its type is
convertible to or from a SQL datatype.

Host expressions can be input, output, or input-output.

See "Supported Types for Host Expressions" on page 5-2 for information about data
conversion between Java and SQL during input and output operations.

Basic Host Expression Syntax

A host expression is preceded by a colon. If the desired mode of the host expression
(input, output, or input-output) is not the default, then the colon must be followed
(before the host expression itself) by | N, OUT, or | NOUT, as appropriate. These are
referred to as mode specifiers. The default is OUT if the host expression is part of an
INTO-list or is the assignment expression in a SET statement. Otherwise, the default
is | N. (When using the default, you can still include the mode specifier if desired.)

Any OUT or | NOUT host expression must be assignable (an I-value, meaning
something that can logically appear on the left side of an equals sign).

The SQL code that surrounds a host expression can use any vendor-specific SQL
syntax; therefore, no assumptions can be made about the syntax when parsing the
SQL operations and determining the host expressions. To avoid any possible
ambiguity, any host expression that is not a simple host variable (in other words,
that is more complex than a non-dotted Java identifier) must be enclosed in
parentheses.

To summarize the basic syntax:

« For asimple host variable without a mode specifier, put the host variable after
the colon, as in the following example:

- host var
« For asimple host variable with a mode specifier, put the mode specifier after

the colon, and put white space (space, tab, newline, or comment) between the
mode specifier and the host variable, as in the following example:

- I NQJT host var

The white space is required to distinguish between the mode specifier and the
variable name.

3-16 SQLJ Developer’s Guide and Reference

Java Host Expressions, Context Expressions, and Result Expressions

« For any other host expression, enclose the expression in parentheses and place it
after the mode specifier, or after the colon if there is no mode specifier, as in the
following examples:

:1 N(host var 1+host var 2)
: (host var 3*host var 4)
2 (i ndex--)

White space is not required after the mode specifier in the above example,
because the parenthesis is a suitable separator, but it is allowed.

An outer set of parentheses is needed even if the expression already starts with
a begin-parenthesis, as in the following examples:

S((x+y).2)
S(((Y)x) . nyQutput ())

Notes:

White space is always allowed after the colon as well as after
the mode specifier. Wherever white space is allowed, you can
also have a comment—SQL comments after the colon and
before the mode specifier, or after the colon and before the host
expression if there is no mode specifier, or after the mode
specifier and before the host expression (these are all in the SQL
namespace), or Java comments within the host expression
(inside the parentheses—this is the Java namespace).

The I N, OQUT, and | NOUT syntax used for host variables and
expressions is not case sensitive; these tokens can be uppercase,
lowercase, or mixed.

Do not confuse the | N, OUT, and | NOUT syntax of SQLJ host
expressions with similar I N, OUT, and | N OUT syntax used in
PL/SQL declarations to specify the mode of parameters passed
to PL/SQL stored functions and procedures.

A simple host variable can appear multiple times in the same SQLJ statement, as
follows ("output” refers to OUT or | NOUT variables, as applicable):

« Ifthe host variable appears only as an input variable, then there are no
restrictions or complications.

Basic Language Features 3-17

Java Host Expressions, Context Expressions, and Result Expressions

If at least one appearance of the host variable is as an output variable in a
PL/SQL block, then you will receive a portability warning if the translator
-war n=port abi | i ty flag is set. SQLJ runtime behavior in this situation is
vendor-specific. The Oracle SQLJ runtime uses value semantics (as opposed to
reference semantics) for all occurrences of the host variable.

If at least one appearance of the host variable is as an output variable in a stored
procedure call, stored function call, SET statement, or INTO-list, then you will
not receive any warning. SQLJ runtime behavior in this situation is
standardized, using value semantics.

If a host expression other than a simple host variable appears multiple times in a
SQLJ statement, then each appearance is treated completely independently of the
other appearances, using value semantics.

For information about the - war n=port abi | i ty flag, see "Translator Warnings
(-warn)" on page 8-42.

For examples of Oracle SQLJ runtime evaluation of host expressions, see "Examples
of Evaluation of Java Expressions at Runtime" on page 3-22.

Examples of Host Expressions

The following examples will help clarify the preceding syntax discussion. (Some of
these examples use SELECT | NTOstatements, which are described in "Single-Row
Query Results—SELECT INTO Statements" on page 3-32.)

1.

In this example, two input host variables are used—one as a test value for a
WHERE clause, and one to contain new data to be sent to the database.

Presume you have a database employee table EMP with an ENAME column for
employee names and a SAL column for employee salaries.

The relevant Java code that defines the host variables is also shown in the
example.

Sring enpnane = "SMTH';
doubl e sal ary = 25000. 0;

#sgl { UPDATE enp SET sal = :salary WHERE enane = :enpnane };

I Nis the default, but you can state it explicitly as well:
#sgl { UPDATE enp SET sal = :IN salary WHERE enane = : I N enpnane };

3-18 SQLJ Developer’s Guide and Reference

Java Host Expressions, Context Expressions, and Result Expressions

As you can see, ":" can immediately precede the variable when not using the I N
token, but ":IN" must be followed by white space before the host variable.

This example uses an output host variable in a SELECT | NTOstatement, where
you want to find out the name of employee number 28959.

Sring enpnang;
#sgl { SELECT enane | NTO : enpnane FROM enp WHERE enpno = 28959 };

QUT is the default for an INTO-list, but you can state it explicitly as well:
#sgl { SELECT enane | NTO : QJT enphane FROM enp WHERE enpno = 28959 };

This looks in the EMPNO column of the EMP table for employee number 28959,
selects the name in the ename column of that row, and outputs it to the
enpnamne output host variable, which is a Java string.

This example uses an arithmetic expression as an input host expression. The
Java variables bal ance and mi nPnt Rat i o are multiplied, and the result is
used to update the mi nPayment column of the cr edi t acct table for account
number 537845.

float bal ance = 12500. O;
float mnPrRatio = 0. 05;

#sgl { UPDATE creditacct SET minPaynent = :(bal ance * ninPmRatio)
WHERE acct num = 537845 };

Or, to use the | Ntoken:

#sgl { UPDATE creditacct SET minPayrment = :IN (bal ance * mnPntRatio)
WHERE acct num = 537845 };

This example shows use of the output of a method call as an input host
expression and also uses an input host variable. This statement uses the value
returned by get NewSal () to update the SAL column in the EMP table for the
employee (in the ENAME column) who is specified by the Java enpnane
variable. Java code initializing the host variables is also shown.

Sring enpnane = "SMTH';
doubl e raise = 0. 1;

#sgl {UPDATE enp SET sal = :(get New&al (raise, enpnane))
WHERE enane = : enphang};

Basic Language Features 3-19

Java Host Expressions, Context Expressions, and Result Expressions

Overview of Result Expressions and Context Expressions

A context expression is an input expression that specifies the name of a connection
context instance or an execution context instance to be used in a SQLJ executable
statement. Any legal Java expression that yields such a name can be used.

A result expression is an output expression used for query results or a function
return. It can be any legal Java expression that is assignable, meaning that it can
logically appear on the left side of an equals sign (this is sometimes referred to as an
I-value).

The following examples can be used for either result expressions or context
expressions:

« local variables

« declared parameters

« class fields (such as mycl ass. nyfi el d)
= array elements

Result expressions and context expressions appear lexically in the SQLJ space,
unlike host expressions, which appear lexically in the SQL space (inside the curly
brackets of a SQLJ executable statement). Therefore, a result expression or context
expression must not be preceded by a colon.

Evaluation of Java Expressions at Runtime

This section discusses the evaluation of Java host expressions, connection context
expressions, execution context expressions, and result expressions when your
application executes.

Here is a simplified representation of a SQLJ executable statement that uses all these
kinds of expressions:

#sqgl [connct xt_exp, execctxt_exp|] result_exp = { SQ wth host expression };

Java expressions can be used as any of the following:

= connection context expression (optional; evaluated to specify the connection
context instance to be used)

« execution context expression (optional; evaluated to specify the execution
context instance to be used)

« result expression (when appropriate; to receive results from a stored function,
for example)

3-20 SQLJ Developer’s Guide and Reference

Java Host Expressions, Context Expressions, and Result Expressions

host expression

The evaluation of Java expressions does have side effects in a Java program because
they are evaluated by Java, not by the SQL engine. Furthermore, the order of
evaluation of these expressions can be critical if any of the expressions have side
effects.

The following is a summary of the overall order of evaluation, execution, and
assignment of Java expressions for each statement that executes during runtime.

1.

7.

If there is a connection context expression, then it is evaluated immediately
(before any other Java expressions are evaluated).

If there is an execution context expression, then it is evaluated after any
connection context expression, but before any result expression.

If there is a result expression, then it is evaluated after any context expressions,
but before any host expressions.

After evaluation of any context or result expressions, host expressions are
evaluated from left to right as they appear in the SQL operation. As each host
expression is encountered and evaluated, its value is saved to be passed to SQL.

Each host expression is evaluated once and only once.

I Nand | NOUT parameters are passed to SQL, and the SQL operation is
executed.

After execution of the SQL operation, the output parameters—Java OUT and
I NOUT host expressions—are assigned output in order from left to right as they
appear in the SQL operation.

Each output host expression is assigned once and only once.

The result expression, if there is one, is assigned output last.

"Examples of Evaluation of Java Expressions at Runtime" on page 3-22, has a series
of examples that clarifies this sequence and discusses a number of special
considerations.

Note: Host expressions inside a PL/SQL block are all evaluated
together before any statements within the block are executed. They
are evaluated in the order in which they appear, regardless of
control flow within the block.

Basic Language Features 3-21

Java Host Expressions, Context Expressions, and Result Expressions

Once the expressions in a statement have been evaluated, input and input-output
host expressions are passed to SQL and then the SQL operation is executed. After
execution of the SQL operation, assignments are made to Java output host
expressions, input-output host expressions, and result expressions as follows: 1)
OUT and | NOUT host expressions are assigned output in order from left to right; 2)
The result expression, if there is one, is assigned output last.

Note that during runtime all host expressions are treated as distinct values, even if
they share the same name or reference the same object. The execution of each SQL
operation is treated as if invoking a remote method, and each host expression is
taken as a distinct parameter. Each input or input-output parameter is evaluated
and passed as it is first encountered, before any output assignments are made for
that statement, and each output parameter is also taken as distinct and is assigned
exactly once.

It is also important to remember that each host expression is evaluated only once.
An | NOUT expression is evaluated when it is first encountered, and the expression
itself is not re-evaluated, nor any side-effects repeated, when the output assignment
is made.

In discussing the evaluation order of host expressions, several points must be
highlighted, as discussed in the remainder of this section.

Examples of Evaluation of Java Expressions at Runtime

This section discusses some of the subtleties of how Java expressions are evaluated
when your application executes, and provides examples. (Some of these examples
use SELECT | NTOstatements, which are described in "Single-Row Query
Results—SELECT INTO Statements" on page 3-32; some use assignment statements,
which are described in "Assignment Statements (SET)" on page 3-55; and some use
stored procedure and function calls, which are described in "Stored Procedure and
Function Calls" on page 3-57.)

Prefix Operators Act Before Evaluation; Postfix Operators Act After Evaluation

When a Java expression contains a Java postfix increment or decrement operator,
the incrementation or decrementation occurs after the expression has been
evaluated. Similarly, when a Java expression contains a Java prefix increment or
decrement operator, the incrementation or decrementation occurs before the
expression is evaluated.

This is equivalent to how these operators are handled in standard Java code.

Consider the following examples.

3-22 SQLJ Developer’s Guide and Reference

Java Host Expressions, Context Expressions, and Result Expressions

Example 1: postfix operator
int indx = 1;
#sql { ... :QJ (array[indx]) ... :IN(indx++) ... };
This example is evaluated as follows:
#sgl { ... :QJT (array[1]) ... :IN(D) ... };

The variable i ndx is incremented to 2 and will have that value the next time it
is encountered, but not until after : I N (i ndx++) has been evaluated.

Example 2: postfix operators
int indx =1,
#sql { ... :QJT (array[indx++]) ... :IN(indx++) ... };
This example is evaluated as follows:
#sgl { ... :QJT (array[l]) ... :IN(2) ... };

The variable i ndx is incremented to 2 after the first expression is evaluated, but
before the second expression is evaluated. It is incremented to 3 after the second
expression is evaluated and will have that value the next time it is encountered.

Example 3: prefix and postfix operators
int indx = 1;
#sql { ... :QJT (array[++indx]) ... :IN(indx++) ... };
This example is evaluated as follows:
#sgl { ... :QJT (array[2]) ... (IN(2) ... };

The variable i ndx is incremented to 2 before the first expression is evaluated. It
is incremented to 3 after the second expression is evaluated and will have that
value the next time it is encountered.

Example 4: postfix operator

int grade = 0;
int countl = 0O;

#sqgl { SELECT count INTO :count1l FROM st af f

Basic Language Features 3-23

Java Host Expressions, Context Expressions, and Result Expressions

WHERE grade = : (grade++) (R grade = :grade };

This example is evaluated as follows:

#sgl { SELECT count INTO :count1l FROM st af f
WHERE grade = 0 CRgrade =1 };

The variable gr ade is incremented to 1 after : (gr ade++) is evaluated and has
that value when : gr ade is evaluated.

Example 5: postfix operators

int count = 1;

int[] x = newint[10];
int[] y=newint[10];
int[] z =newint[10];

#sql { SET :(z[count++]) = :(x[count++]) + :(y[count++]) };

This example is evaluated as follows:
#sal { SET :(z[1]) =:(x[2]) +:(y[3]) };

The variable count is incremented to 2 after the first expression is evaluated,
but before the second expression is evaluated; it is incremented to 3 after the
second expression is evaluated, but before the third expression is evaluated,; it is
incremented to 4 after the third expression is evaluated and will have that value
the next time it is encountered.

Example 6: postfix operator

int[] arr = {3, 4, 5};

int i =0;
#sql { BEGN
CQJT (arr[i+H]) (= :(arr[i]);
END };

This example is evaluated as follows:

#sql { BEAN
(QJT (a[0]) :=:(a[1]);
END };

The variable i is incremented to 1 after the first expression is evaluated, but
before the second expression is evaluated; therefore, output will be assigned to

3-24 SQLJ Developer’s Guide and Reference

Java Host Expressions, Context Expressions, and Result Expressions

arr[0] . Specifically, ar r [0] will be assigned the value of ar r [1] , which is 4.
After execution of this statement, array ar r will have the values {4, 4, 5}.

IN versus INOUT versus OUT Makes No Difference in Evaluation Order

Host expressions are evaluated from left to right. Whether an expression is | N,
I NOUT, or OUT makes no difference in when it is evaluated; all that matters is its
position in the left-to-right order.

Example 7: | Nversus | NOUT versus OUT

int[5] arry;
int n=0;

#sql { SET :QJT (arry[n]) = :(++) };

This example is evaluated as follows:

#sgl { SET :QJT (arry[0]) =1};

One might expect input expressions to be evaluated before output expressions,
but that is not the case. : QUT (arry[n]) isevaluated first because it is the
left-most expression. Then n is incremented prior to evaluation of ++n, because
it is being operated on by a prefix operator. Then ++n is evaluated as 1. The

result will be assigned to ar ry[0], notarry[1], because 0 was the value of n
when it was originally encountered.

Expressions in PL/SQL Blocks Are Evaluated Before Statements Are Executed

Host expressions in a PL/SQL block are all evaluated in one sequence, before any
have been executed.

Example 8: evaluation of expressions in a PL/SQL block

int x=3;
int z=5;

#sgl { BEAN:QUT x :=10; :QJr z :=:x; END};
Systemout. println("x=" + x +", z=" + 2);

This example is evaluated as follows:
#sgl { BEAN:QUT x :=10; :QJr z := 3; END };

Therefore, it would print "x=10, z=3".

Basic Language Features 3-25

Java Host Expressions, Context Expressions, and Result Expressions

All expressions in a PL/SQL block are evaluated before any are executed. In
this example, the host expressions in the second statement, : OUT z and : X,
are evaluated before the first statement is executed. In particular, the second
statement is evaluated while x still has its original value of 3, before it has been
assigned the value 10.

Example 9: evaluation of expressions in a PL/SQL block (with postfix)

Consider an additional example of how expressions are evaluated within a
PL/SQL block.

int x=1, y=4, z=3;

#sgl { BEAN
QT x i= i (y+H) + 1
CQJT z 1= :x;
END };

This example is evaluated as follows:

#sgl { BEAN
cQUr x :=4 + 1;
QJrz : = 1;
BEND };

The postfix increment operator is executed after : (y++) is evaluated, so the
expression is evaluated as 4 (the initial value of y). The second statement, : OUT
Z : = :X,isevaluated before the first statement is executed, so x still has its
initialized value of 1. After execution of this block, x will have the value 5 and z
will have the value 1.

Example 10: statements in one block versus separate SQLJ executable statements

This example demonstrates the difference between two statements appearing in
a PL/SQL block in one SQLJ executable statement, and the same statements
appearing in separate (consecutive) SQLJ executable statements.

First, consider the following, where two statements are in a PL/SQL block.
int y=1;

#sql { BEAN:QUry :=:y + 1, :QJT x :=:y +1, END};

This example is evaluated as follows:

#sql { BEAN:QUT'y :=1+1;, :QUx :=1+1 END};

3-26 SQLJ Developer’s Guide and Reference

Java Host Expressions, Context Expressions, and Result Expressions

The : y in the second statement is evaluated before either statement is executed,
so y has not yet received its output from the first statement. After execution of
this block, both x and y have the value 2.

Now, consider the situation where the same two statements are in PL/SQL
blocks in separate SQLJ executable statements.

int y=1;
#sql { BEAN:QUT'y :=:y +1; BND};
#sgql { BEQAN:QJUT x :=:y +1; BND};

The first statement is evaluated as follows:
#sgl { BEAN:QUT'y :=1 +1; END};

Then it is executed and y is assigned the value 2.

After execution of the first statement, the second statement is evaluated as
follows:

#sgl { BEAN:QJT x := 2 + 1, END };
This time, as opposed to the PL/SQL block example above, y has already

received the value 2 from execution of the previous statement; therefore, x is
assigned the value 3 after execution of the second statement.

Expressions in PL/SQL Blocks Are Always Evaluated Once Only

Each host expression is evaluated once, and only once, regardless of program flow
and logic.

Example 11: evaluation of host expression in a loop

int count = 0O;
#sqgl {
DEQLARE
n NUMBER
BEA N
n:=1;
WA LE n <= 100 LOP
:IN (count ++) ;
n:=n+1;
BEND LR,
BEND
b

Basic Language Features 3-27

Java Host Expressions, Context Expressions, and Result Expressions

The Java variable count will have the value 0 when it is passed to SQL
(because it is operated on by a postfix operator, as opposed to a prefix operator),
then will be incremented to 1 and will hold that value throughout execution of
this PL/SQL block. It is evaluated only once as the SQLJ executable statement is
parsed and then is replaced by the value 1 prior to SQL execution.

Example 12: evaluation of host expressions in conditional blocks

This example demonstrates how each expression is always evaluated,
regardless of program flow. As the block is executed, only one branch of the

| F. .. THEN. . . ELSE construct can be executed. Before the block is executed,
however, all expressions in the block are evaluated, in the order that the
statements appear.

int x;
(operations on x)
#sqgl {
CEQLARE
n NUMBER
BEQ N
n:=:x
IF n <10 THEN
n:=:(x++);
BELSE
n:=:x*:x;
END LOCP,
END
b

Say the operations performed on x resulted in x having a value of 15. When the
PL/SQL block is executed, the ELSE branch will be executed and the | F branch
will not; however, all expressions in the PL/SQL block are evaluated before
execution, regardless of program logic or flow. So x++ is evaluated, then x is
incremented, then each x is evaluated in the (x * X) expression. The

| F. .. THEN. . . ELSE block is, therefore, evaluated as follows:

IF n< 10 THEN

n :=15;
B.SE

n:=:16 * :16;
BND LACP,

3-28 SQLJ Developer’s Guide and Reference

Java Host Expressions, Context Expressions, and Result Expressions

After execution of this block, given an initial value of 15 for x, n will have the
value 256.

Output Host Expressions Are Assigned Left to Right, Before Result Expression

Remember that OUT and | NOUT host expressions are assigned in order from left to
right, and then the result expression, if there is one, is assigned last. If the same
variable is assigned more than once, then it will be overwritten according to this
order, with the last assignment taking precedence.

Note: Some of these examples use stored procedure and function
calls, whose syntax is explained in "Stored Procedure and Function
Calls" on page 3-57.

Example 13: multiple output host expressions referencing the same variable
#sgl { CALL foo(:QUT x, :QJT Xx) };
If f oo() outputs the values 2 and 3, respectively, then x will have the value 3

after the SQLJ executable statement has finished executing. The right-hand
assignment will be performed last, thereby taking precedence.

Example 14: multiple output host expressions referencing the same object

M/d ass x = new Md ass();
Mdass y = x;
#sql { ... A (x.field):=1 ... :QJT (y.field):=2 ... };

After execution of the SQLJ executable statement, x. fi el d will have a value of
2, not 1, because x is the same object asy, and f i el d was assigned the value of
2 after it was assigned the value of 1.

Example 15: results assignment taking precedence over host expression assignment

This example demonstrates the difference between having the output results of
a function assigned to a result expression and having the results assigned to an
QUT host expression.

Consider the following function, with an inputi nvar, an output out var, and a
return value:

CREATE FUNCTION fn(invar NUMBER outvar GJT NUMBER)
RETURN NUMBER AS BEG N

Basic Language Features 3-29

Java Host Expressions, Context Expressions, and Result Expressions

outvar :=invar +invar;
return (invar * invar);
BEND fn;

Now consider an example where the output of the function is assigned to a
result expression:

int x =3;
#sgl x = { VALLES(fn(:x, :QJT x)) };

The function will take 3 as the input, will calculate 6 as the output, and will
return 9. After execution, the : OUT x will be assigned first, giving x a value of
6. But finally the result expression is assigned, giving x the return value of 9
and overwriting the value of 6 previously assigned to x. So x will have the
value 9 the next time it is encountered.

Now consider an example where the output of the function is assigned to an
QUT host variable instead of to a result expression:

int x =3;
#sgl { BEAN:QUT x :=fn(:x, :QJT x); END};

In this case, there is no result expression and the OUT variables are simply
assigned left to right. After execution, the first : OUT X, on the left side of the
equation, is assigned first, giving x the function return value of 9. Proceeding
left to right, however, the second : OQUT X, on the right side of the equation, is
assigned last, giving x the output value of 6 and overwriting the value of 9
previously assigned to x. So x will have the value 6 the next time it is
encountered.

Note: Some unlikely cases have been used in these examples to
explain the concepts of how host expressions are evaluated. In
practice, it is not advisable to use the same variable in both an OUT
or | NOUT host expression, or in an | Nhost expression inside a
single statement or PL/SQL block. The behavior in such cases is
well defined in Oracle SQLJ, but this practice is not covered in the
SQLJ specification, so code written in this manner will not be
portable. Such code will generate a warning from the Oracle SQLJ
translator if the por t abl e flag is set during semantics-checking.

3-30 SQLJ Developer’s Guide and Reference

Java Host Expressions, Context Expressions, and Result Expressions

Restrictions on Host Expressions

Do not use "in", "out", and "inout" as identifiers in host expressions unless they are
enclosed in parentheses. Otherwise, they might be mistaken for mode specifiers.
This is case-insensitive.

For example, you could use an input host variable called "in" as follows:
2(in)

or:

IN(in)

Basic Language Features 3-31

Single-Row Query Results—SELECT INTO Statements

Single-Row Query Results—SELECT INTO Statements

When only a single row of data is being returned from the database, SQLJ allows
you to assign selected items directly to Java host expressions inside SQL syntax.
This is done using the SELECT | NTOstatement. The syntax is as follows:

#sgl { SELECT expressionl,..., expressionN |NIO: host_expl,..., :host_expN
FRCM dat asour ce <optional clauses> };
Where:

« expressionlthrough expressi onNare expressions specifying what is to be
selected from the database. These can be any expressions valid for any SELECT
statement. This list of expressions is referred to as the SELECT-list.

In a simple case, these would be names of columns from a database table.

It is also legal to include a host expression in the SELECT-list (see the examples
below).

« host_explthrough host _expNare target host expressions, such as variables
or array indexes. This list of host expressions is referred to as the INTO-list.

« dat asour ce is the name of the database table, view, or snapshot from which
you are selecting the data.

« optional clauses are any additional clauses you want to include that are
valid in a SELECT statement, such as a WHERE clause.

A SELECT | NTOstatement must return one, and only one, row of data, otherwise
an error will be generated at runtime.

The default is OUT for a host expression in an INTO-list, but you can optionally state
this explicitly:

#sgl { SELECT col unm_nanel, col urm_name2 | NTO : QJT host_expl, :OJT host_exp2
FROM t abl e WHERE condi tion };

Trying to use an | Nor | NOUT token in the INTO-list will result in an error at
translation time.

3-32 SQLJ Developer’s Guide and Reference

Single-Row Query Results—SELECT INTO Statements

Notes:

« Permissible syntax for expr essi onl1 through expr essi onN,
the dat asour ce, and the optional clauses is the same as for
any SQL SELECT statement. For information about what is
permissible in Oracle SQL, see the Oracle8i SQL Reference.

« There can be any number of SELECT-list and INTO-list items,
as long as they match—one INTO-list item per SELECT-list
item, with compatible types.

Examples of SELECT INTO Statements
The examples below use a subset of the standard EMP table:

CREATE TABLE BIWP (

EMPNO NUMBER(4)
ENAME VARCHARY(10) ,
H REDATE DATE);

The first example is a SELECT | NTOstatement with a single host expression in the
INTO-list:

Sring enpnang;

#sgl { SELECT enane | NTO : enpnane FROM enp WHERE enpno=28959 };

The second example is a SELECT | NTOstatement with multiple host expressions in
the INTO-list:

Sring enpnang;

Dat e hdat €;

#sgl { SELECT enane, hiredate | NTO : enpnane, :hdate FROM enp
WHERE enpno=28959 };

Examples with Host Expressions in SELECT-List

It is legal to use Java host expressions in the SELECT-list as well as in the INTO-list.

For example, you can select directly from one host expression into another (though
this is of limited usefulness):

#sgl { SELECT : namel | NTO : nane2 FROM enp WHERE enpno=28959 };

Basic Language Features 3-33

Single-Row Query Results—SELECT INTO Statements

More realistically, you might want to perform an operation or concatenation on the
data selected, as in the following examples (assume Java variables were previously
declared and assigned, as necessary):

#sgl { SELECT sal + :raise | NTO:newsal FROMenp WHERE enpno=28959 };

#sgl { SELECT :(firstnane + " ") || enp_last_nane | NTO : name FROM nyenp
WHERE enpno=28959 };

In the second example, presume MYEMP is a table much like the standard EMP table
but with an EMP_LAST_NAME column instead of an ENAME column. In the SELECT
statement, f i r st name is prepended to " " (a single space), using a Java host
expression and Java string concatenation (the + operator). This result is then passed
to the SQL engine, which uses SQL string concatenation (the | | operator) to
append the last name.

3-34 SQLJ Developer’s Guide and Reference

Multi-Row Query Results—SQLJ Iterators

Multi-Row Query Results—SQLJ Iterators

A large number of SQL operations are multi-row queries. Processing multi-row
query-results in SQLJ requires a SQLJ iterator, which is a strongly typed version of a
JDBC result set and is associated with the underlying database cursor. SQLJ
iterators are used first and foremost to take query results from a SELECT statement.

Additionally, Oracle SQLJ offers extensions that allow you to use SQLJ iterators and
result sets in the following ways:

« as OUT host variables in executable SQL statements
« asINTO-list targets, such as in a SELECT | NTOstatement
« asareturn type from a stored function call

« ascolumn types in iterator declarations (essentially, nested iterators)

Note: To use a SQLJ iterator in any of these ways, its class must be
declared as publ i c. If you declared it at the class level or
nested-class level, then it might be advisable to declare it as
public static.

For information about use as stored function returns, see "Using Iterators and
Result Sets as Stored Function Returns" on page 3-60, after stored procedures and
stored functions have been discussed. The other uses listed above are documented
later in this section.

For information about advanced iterator topics, see "Iterator Class Implementation
and Advanced Functionality" on page 7-25. This section discusses how iterator
classes are implemented and what advanced functionality is available, such as
interoperability with JDBC result sets and subclassing of iterators.

Iterator Concepts

Before using an iterator object, you must declare an iterator class. An iterator
declaration specifies a Java class that SQLJ constructs for you, where the class
attributes define the types (and, optionally, the names) of the columns of data in the
iterator.

A SQLJ iterator object is an instantiation of such a specifically declared iterator
class, with a fixed number of columns of predefined type. This is as opposed to a
JDBC result set object, which is a standard j ava. sql . Resul t Set instance and
can, in principle, contain any number of columns of any type.

Basic Language Features 3-35

Multi-Row Query Results—SQLJ Iterators

When you declare an iterator, you specify either just the datatypes of the selected
columns, or both the datatypes and the names of the selected columns:

« Specifying the names and datatypes defines a named iterator class.
« Specifying just the datatypes defines a positional iterator class.

The datatypes (and names, if applicable) that you declare determine how query
results will be stored in iterator objects you instantiate from that class. SQL data
retrieved into an iterator object are converted to the Java types specified in the
iterator declaration.

When you query to populate a named iterator object, the names and datatypes of
the SELECT-fields must match the names and types of the iterator columns
(case-insensitive). The order of the SELECT-fields is irrelevant—all that matters is
that each SELECT-field name matches an iterator column name. In the simplest
case, the database column names directly match the iterator column names. For
example, data from an ENAME column in a database table can be selected and put
into an iterator enane column. Alternatively, you can use an alias to map a
database column name to an iterator column name if the names differ. Furthermore,
in a more complicated query, you can perform an operation between two columns
and alias the result to match the corresponding iterator column name. (These last
two cases are discussed in "Instantiating and Populating Named Iterators" on
page 3-42.)

Because SQLJ iterators are strongly typed, they offer the benefit of Java
type-checking during the SQLJ semantics-checking phase.

As an example, consider the following table:

CREATE TABLE BIWPSAL (

EMPNO NUMBER(4)
ENAME VARCHARY(10) ,

QLDSAL NUMBER(10),
RAl SE NUVBER(10));

Given this table, you can declare and use a named iterator as follows.
Declaration:

#sgl iterator Sal Nanedlter (int enpno, String enane, float raise);

Executable code:

class Md ass {
voi d func() throws SQException {

3-36 SQLJ Developer’s Guide and Reference

Multi-Row Query Results—SQLJ Iterators

Sal Nanedl ter niter = nul | ;
#sgl niter = { SELECT enane, enpno, raise FROMenpsal };

. process niter ...

}

This is a simple case where the iterator column names match the table column
names. Note that the order of items in the SELECT statement does not matter when
you use a named iterator—data is matched by name, not position.

When you query to populate a positional iterator object, the data is retrieved
according to the order in which you select the columns. Data from the first column
selected from the database table is placed into the first column of the iterator, and so
on. The datatypes of the table columns must be convertible to the types of the
iterator columns, but the names of the database columns are irrelevant, as the
iterator columns have no names.

Given the EMPSAL table above, you can declare and use a positional iterator as
follows.

Declaration:

#sgl iterator SalPoslter (int, Sring, float);

Executable code:

class Md ass {
voi d func() throws SQException {

Sal Poslter piter = null;
#sgl piter = { SELECT enpno, enane, raise FROMenpsal };

. process piter ...

}

Note that the data items are in the same order in the table, iterator, and SELECT
statement.

The processing differs between named iterators and positional iterators, as
described in "Accessing Named Iterators" on page 3-43 and "Accessing Positional
Iterators” on page 3-46.

lterator Notes In addition to the preceding concepts, be aware of the following
general notes about iterators:

Basic Language Features 3-37

Multi-Row Query Results—SQLJ Iterators

SELECT * syntax is allowed in populating an iterator, but is not recommended.
In the case of a positional iterator, this requires that the number of columns in
the table be equal to the number of columns in the iterator, and that the types
match in order. In the case of a named iterator, this requires that the number of
columns in the table be greater than or equal to the number of columns in the
iterator and that the name and type of each iterator column match a database
table column. (If the number of columns in the table is greater, however, a
warning will be generated unless the translator - war n=nostri ct flag is set.
For information about this flag, see "Translator Warnings (-warn)" on

page 8-42.)

Positional and named iterators are distinct and incompatible kinds of Java
classes. An iterator object of one kind cannot be cast to an iterator object of the
other kind.

Unlike a SQL cursor, an iterator instance is a first-class Java object (it can be
passed and returned as a method parameter, for example) and can be declared
using Java class modifiers, such as public or private.

SQLJ supports interoperability and conversion between SQLJ iterators and
JDBC result sets. For information, see "SQLJ Iterator and JDBC Result Set
Interoperability” on page 7-41.

The contents of an iterator is determined only by the state of the database at the
time of execution of the SELECT statement that populated it. Subsequent
UPDATE, | NSERT, DELETE, COMM T, or ROLLBACK operations have no effect on
the iterator or its contents. This is further discussed in "Effect of Commits and
Rollbacks on Iterators and Result Sets" on page 4-31. (However, updatable and
update-sensitive iterators will likely be supported in a future release.)

General Steps in Using an Iterator
Five general steps are involved in using either kind of SQLJ iterator:

1.

Use a SQLJ declaration to define the iterator class (in other words, to define the
iterator type).

Declare a variable of the iterator class.

Populate the iterator variable with the results from a SQL query, using a
SELECT statement.

Access the query columns in the iterator (how to accomplish this differs
between named iterators and positional iterators, as explained below).

3-38 SQLJ Developer’s Guide and Reference

Multi-Row Query Results—SQLJ Iterators

5. When you finish processing the results of the query, close the iterator to release
its resources.

Named lterators versus Positional Iterators

There are advantages and appropriate situations for each of the two kinds of SQLJ
iterators.

Named iterators allow greater flexibility. Because data selection into a named
iterator matches SELECT-fields to iterator columns by name, you need not be
concerned about the order in your query. This is less prone to error, as it is not
possible for data to be placed into the wrong column. If the names don’t match, the
SQLJ translator will generate an error when it checks your SQL statements against
the database.

Positional iterators offer a familiar paradigm and syntax to developers who have
experience with other embedded-SQL languages. With named iterators you use a
next () method to retrieve data, while with positional iterators you use FETCH

| NTOsyntax similar to that of Pro*C, for example. (Each fetch implicitly advances to
the next available row of the iterator before retrieving the next set of values.)

Positional iterators do, however, offer less flexibility than named iterators, because
you are selecting data into iterator columns by position, instead of by nhame. You
must be certain of the order of items in your SELECT statement. You also must
select data into all columns of the iterator, and it is possible to have data written
into the wrong iterator column if the type of that column happens to match the
datatype of the table column being selected.

Access to individual data elements is also less convenient with positional iterators.
Named iterators, because they store data by name, are able to have convenient
accessor methods for each column (for example, there would be an enane()
method to retrieve data from an ename iterator column). With positional iterators,
you must fetch data directly into Java host expressions with your FETCH | NTO
statement, and the host expressions must be in the correct order.

Basic Language Features 3-39

Multi-Row Query Results—SQLJ Iterators

Notes:

= Inpopulating a positional iterator, the number of columns you
select from the database must equal the number of columns in
the iterator. In populating a named iterator, the number of
columns you select from the database can never be less than the
number of columns in the iterator, but can be greater than the
number of columns in the iterator if you have the translator
-war n=nostri ct flag set. Unmatched columns are ignored in
this case. (For information about this flag, see "Translator
Warnings (-warn)" on page 8-42.)

« Although the term "fetching" often refers to fetching data from
a database, remember that a FETCH | NTOstatement for a
positional iterator does not necessarily involve a round trip to
the server, depending on the row-prefetch value. This is
because you are fetching data from the iterator, not the
database. If the row-prefetch value is 1, however, then each
fetch does involve a separate trip to the database. (The
row-prefetch value determines how many rows are retrieved
with each trip to the database. See "Row Prefetching" on
page A-3.)

Using Named lterators

When you declare a named iterator class, you declare the name as well as the
datatype of each column of the iterator.

When you select data into a named iterator, the SELECT-fields must match the
iterator columns in two ways:

« The name of each SELECT-field, either a table column name or an alias, must
match an iterator column name (case-insensitive, so enamre would match
ENAVME).

= The type of each iterator column must be compatible with the datatype of the
corresponding SELECT-field, according to standard JDBC type mappings.

The order in which attributes are declared in your named iterator class declaration
is irrelevant. Data is selected into the iterator based on name alone.

A named iterator has a next () method to retrieve data row by row and an accessor
method for each column to retrieve the individual data items. The accessor method
names are identical to the column names. (Unlike most accessor method names in

3-40 SQLJ Developer’s Guide and Reference

Multi-Row Query Results—SQLJ Iterators

Java, accessor method names in named iterator classes do not start with "get".) For
example, a named iterator object with a column sal would have a sal () accessor
method.

Note: The following restrictions apply in naming the columns of a
named iterator:

. Column names cannot use Java reserved words.

« Column names cannot have the same name as utility methods
provided in named iterator classes—the next (), cl ose(),
get Resul t Set (),and i sCl osed() methods.

Declaring Named Iterator Classes
Use the following syntax to declare a named iterator class:

#sql <nodifiers> iterator classnane <inplenents cl ause> <with cl ause>
(type-nane-list);

Where nodi fi er s is an optional sequence of legal Java class modifiers,

cl assnane is the desired class name for the iterator, and t ype- nane- /i st is a
list of the Java types and names equivalent to (convertible from) the column types
and column names in a database table.

The i nmpl ement s clause and wi t h clause are optional, specifying interfaces to
implement and variables to define and initialize, respectively. These are discussed
in "Declaration IMPLEMENTS Clause" on page 3-5 and "Declaration WITH Clause"
on page 3-6.

Now consider the following table:

CREATE TABLE PRQJECTS (

I D NUVBER(4),

PROJNAME VARCHAR(30),

START_DATE DATE,

DURATI ON NMVBER(3));
You might declare the following named iterator for use with this table:
#sgl public iterator Projlter (String projnane, int id, Date deadline);

This will result in an iterator class with columns of data accessible using the
following provided accessor methods: pr oj name(),i d(),and deadl i ne().

Basic Language Features 3-41

Multi-Row Query Results—SQLJ lterators

Note: As with standard Java, any public class should be declared
in one of the following ways (this is a requirement if you are using
the standard j avac compiler provided with the Sun Microsystems
IDK):

« Declare it in a separate source file. The base name of the file
should be the same as the class name.

or:

« Declare it at class-level scope or nested-class-level scope, with
publ i c static modifiers.

Instantiating and Populating Named Iterators

Declare a variable of the Pr oj | t er positional iterator type from the preceding
section and populate it with a SELECT statement.

Continuing to use the PROJECTS table and Pr oj | t er iterator defined in the
preceding section, note that there are columns in the table whose names and
datatypes match the i d and pr oj name columns of the iterator, but you must use an
alias and perform an operation to populate the deadl i ne column of the iterator.
Here is an example:

Projlter projslter;

#sql projsliter = { SELECT start_date + duration AS deadline, projnane, id
FRCM proj ects WHERE start_date + duration >= sysdate };

This calculates a deadline for each project by adding its duration to its start date,
then aliases the results as deadl| i ne to match the deadl i ne iterator column. It
also uses a WHERE clause so that only future deadlines are processed (deadlines
beyond the current system date in the database).

Similarly, you must create an alias if you want to use a function call. Suppose you
have a function MAXI MUM) that takes a DURATI ON entry and an integer as input
and returns the maximum of the two. (For example, you could input a 3 to make
sure each project has at least a three-month duration in your application.)

Now presume you are declaring your iterator as follows:

#sgl public iterator Projlter2 (Sring projnane, int id, float duration);

You could use the MAXI MUM) function in your query, with an alias for the result, as
follows:

3-42 SQLJ Developer’s Guide and Reference

Multi-Row Query Results—SQLJ Iterators

Projlter2 projsiter2;

#sql projsliter2 = { SELECT id, projnane, naxi nun{duration, 3) AS duration
FROM proj ects };

Generally, you must use an alias in your query for any SELECT-field whose name is
not a legal Java identifier or does not match a column name in your iterator.

Remember that in populating a named iterator, the number of columns you select
from the database can never be less than the number of columns in the iterator. The
number of columns you select can be greater than the number of columns in the
iterator (unmatched columns are ignored), but this will generate a warning unless
you have the SQLJ - war n=nost ri ct option set.

Accessing Named lterators

Use the next () method of the named iterator object to step through the data that
was selected into it. To access each column of each row, use the accessor methods
generated by SQLJ, typically inside a whi | e loop.

Whenever next () is called:

« If there is another row to retrieve from the iterator, next () retrieves the row
and returnstr ue.

« If there are no more rows to retrieve, next () returnsf al se.

The following is an example of how to access the data of a named iterator, repeating
the declaration, instantiation, and population used under "Instantiating and
Populating Named Iterators" on page 3-42.

Note: Each iterator hasacl ose() method that you must always
call once you finish retrieving data from the iterator. This is
necessary to close the iterator and free its resources.

Presume the following iterator class declaration:

#sgl public iterator Projlter (String projnane, int id, Date deadline);

Populate and then access an instance of this iterator class as follows:

/] Declare the iterator variabl e
Projlter projsliter = null;

I Instantiate and populate iterator; order of SELECT doesn't matter

Basic Language Features 3-43

Multi-Row Query Results—SQLJ Iterators

#sql projsliter = { SELECT start_date + duration AS deadline, projnane, id
FROM proj ects WHERE start_date + duration >= sysdate };

/1 Process the results

vhile (projsiter.next()) {
Systemout.printIn("Project nane is " + projslter.projnanme());
Systemout.printIn("Project IDis " + projslter.id());
Systemout. printIn("Project deadline is " + projslter.deadline());

}

// Qose the iterator
projslter.close();

Note the convenient use of the pr oj nane(),i d(),and deadl i ne() accessor
methods to retrieve the data. Note also that the order of the SELECT items does not
matter, nor does the order in which the accessor methods are used.

Remember, however, that accessor method names are created with the case exactly
as in your declaration of the iterator class. The following will generate compilation
errors.

Declaration:
#sgl iterator Qursorl (Sring NAME);

Executable code:

Qursorl cl;
#sgl cl = { SELECT NAME FROM TABLE };
vhile (cl.next()) {
Systemout. printIn("The nane is " + cl. nane());

}

The Cursorl class has a method called NAME() , not nane() . You would have to use
cl. NAME() inthe System out . pri nt| n statement.

For a complete sample of using a named iterator, see "Named
Iterator—Named IterDemo.sglj" on page 12-5.

Using Positional Iterators

When you declare a positional iterator class, you declare the datatype of each
column but not the column name. The Java types into which the columns of the

3-44 SQLJ Developer’s Guide and Reference

Multi-Row Query Results—SQLJ Iterators

SQL query results are selected must be compatible with the datatypes of the SQL
data. The names of the database columns or SELECT-fields are irrelevant.

Because names are not used, the order in which you declare your positional iterator
Java types must exactly match the order in which the data is selected.

To retrieve data from a positional iterator once data has been selected into it, use a
FETCH | NTOstatement followed by an endFet ch() method call to determine if
you have reached the end of the data (as detailed under "Accessing Positional
Iterators" on page 3-46).

Declaring Positional Iterator Classes
Use the following syntax to declare a positional iterator class:

#sql <nodifiers> iterator classnane <inplenents cl ause> <with cl ause>
(position-list);

Where nodi fi er s is an optional sequence of legal Java class modifiers, and the
posi tion-1ist isalist of Java types compatible with the column types in a
database table.

The i npl ement s clause and wi t h clause are optional, specifying interfaces to
implement and variables to define and initialize, respectively. These are discussed
in "Declaration IMPLEMENTS Clause" on page 3-5 and "Declaration WITH Clause"
on page 3-6.

Now consider the following table, a subset of the standard EMP table:

CREATE TABLE BWP (

EMPNO NUMBER(4)
ENAME VARCHARY(10) ,

SAL NIMBER(7,2));
And consider the following positional iterator declaration:

#sgl public iterator Enplter (String, int, float);

This example defines Java class Enpl t er with unnamed St ri ng,i nt,and f| oat
columns. Note that the table columns and iterator columns are in a different
order—the St ri ng corresponds to ENAME and the i nt corresponds to EMPNO,

Basic Language Features 3-45

Multi-Row Query Results—SQLJ lterators

Note: As with standard Java, any public class should be declared
in one of the following ways (this is a requirement if you are using
the standard j avac compiler provided with the Sun Microsystems
IDK):

« Declare it in a separate source file. The base name of the file
should be the same as the class name.

or:

« Declare it at class-level scope or nested-class-level scope, with
publ i c static modifiers.

Instantiating and Populating Positional Iterators
Declare a variable of the Enpl t er positional iterator type from the preceding
section and populate it with a SELECT statement.

Instantiating and populating a positional iterator is no different than doing so for a
named iterator, except that you must be certain that your SELECT-fields are in the
proper order.

The three datatypes in the Enpl t er iterator class are compatible with the types of
the EMP table, but be careful how you select the data, because the order is different.
The following will work—instantiating and populating the iterator—as the
SELECT-fields are in the same order as the iterator columns:

Enplter enpsiter = null;
#sgl enpsliter = { SHLECT enane, enpno, sal FRMenp };

Remember that in populating a positional iterator, the number of columns you
select from the database must equal the number of columns in the iterator.

Accessing Positional Iterators

Access the columns defined by a positional iterator using SQL FETCH | NTOsyntax.
The | NTOpart of the command specifies Java host variables that receive the results
columns. The host variables must be in the same order as the corresponding iterator

columns. Use the endFet ch() method provided with all positional iterator classes
to determine whether the last fetch reached the end of the data.

3-46 SQLJ Developer’s Guide and Reference

Multi-Row Query Results—SQLJ Iterators

Notes:

« TheendFet ch() method initially returnst r ue before any
rows have been fetched, then returns f al se once a row has
been successfully retrieved, then returnst r ue again when a
FETCH finds no more rows to retrieve. Therefore, you must
perform the endFet ch() test after the FETCH | NTOstatement.
If your endFet ch() test precedes the FETCH | NTOstatement,
then you will never retrieve any rows, because endFet ch()
would be true before your first FETCH and you would
immediately break out of the whi | e loop.

« TheendFet ch() test must be before the results are processed,
however, because the FETCH does not throw a SQL exception
when it reaches the end of the data, it just triggers the next
endFet ch() call to returntrue. If thereis no endFet ch()
test before results are processed, then your code will try to
process null or invalid data from the first FETCH attempt after
the end of the data had been reached.

« Eachiterator has a cl ose() method that you must always call
once you finish retrieving data from it. This is necessary to
close the iterator and free its resources.

The following is an example, repeating the declaration, instantiation, and
population used under "Instantiating and Populating Positional Iterators" on
page 3-46.

Note that the Java host variables in the SELECT statement are in the same order as
the columns of the positional iterator, which is mandatory.

First, presume the following iterator class declaration:

#sgl public iterator Enplter (String, int, float);

Populate and then access an instance of this iterator class as follows:

/] Declare and initialize host variables
int enpnun¥0;

Sring enpnane=nul | ;

float sal ary=0. Of;

/!l Declare an iterator instance
Enplter enpslter;

Basic Language Features 3-47

Multi-Row Query Results—SQLJ Iterators

#sgl enpsliter = { SHLECT enane, enpno, sal FROMenp };

vhile (true) {
#sgl { FETCH :enpslter INTO :enpnum :enpnare, :salary };
if (enpslter.endFetch()) break; // This test nust be AFTER fetch,
/1 but before results are processed.
Systemout. printIn("Nane is " + enpnane);
Systemout . printl n("Enpl oyee nunber is " + enpnun);
Systemout.printin("Salary is " + salary);

}

/!l Aose the iterator
enpslter.close();

The enpnane, enpnum and sal ar y variables are Java host variables whose types
must match the types of the iterator columns.

Do not use the next () method for a positional iterator. A FETCH calls it implicitly
to move to the next row.

Note: Host variablesin a FETCH | NTOstatement must always be
initialized because they are assigned in one branch of a conditional
statement. Otherwise, you will get a compiler error indicating they
may never be assigned. (FETCH can assign the variables only if
there was a row to be fetched.)

For a complete sample of using a positional iterator, see "Positional
Iterator—PoslterDemo.sqlj" on page 12-9.

Using Iterators and Result Sets as Host Variables

SQLJ supports SQLJ iterators and JDBC result sets as host variables, as illustrated in
the examples below.

3-48 SQLJ Developer’s Guide and Reference

Multi-Row Query Results—SQLJ Iterators

Notes:

« Additionally, SQLJ supports iterators and result sets as return
variables for stored functions. This is discussed in "Using
Iterators and Result Sets as Stored Function Returns" on
page 3-60.

« The Oracle JDBC drivers do not currently support result sets as
input host variables. There is a set Cur sor () method in the
O acl ePrepar edSt at enent class, but it raises an exception
at runtime if called.

As you will see from the following examples, using iterators and result sets is
fundamentally the same, with differences in declarations and in accessor methods
to retrieve the data.

For the examples in this section, consider the following tables—subsets of the
standard DEPT and EMP tables:

CREATE TABLE DEPT (

DEPTNO NUMBER 2)
DNAME VARCHAR2(14)) ;

CREATE TABLE BWP (
EMPNO NUVBER(4) ,
ENAME VARCHARY(10)
SAL NUMBER(7, 2),
DEPTNO NMBER(2)) ;

Example: Use of Result Set as OUT Host Variable This example uses a JDBC result set as
an output host variable.

Resul t Set rs;

#sgl { BEAN
CPEN : QJT rs FCR SELECT enane, enpno FROM enp;

BEND };

vhile (rs.next())

{
Sring enpnane = rs.getSring(l);
int enpnum=rs.getint(2);

Basic Language Features 3-49

Multi-Row Query Results—SQLJ Iterators

rs. close();

This example opens the result set r s in a PL/SQL block to receive data from a
SELECT statement, selects data from the ENAME and EMPNO columns of the EMP
table, then loops through the result set to retrieve data into local variables.

Example: Use of Iterator as OUT Host Variable This example uses a named iterator as an
output host variable.

Declaration:

#sgl public <static> iterator Enplter (String enane, int enpno);

(The publ i ¢ modifier is required, and st at i ¢ may be advisable if your
declaration is at class level or nested-class level.)

Executable code:

Enplter iter;

#sgl { BEAN
CPEN : QJT iter FOR SELECT enane, enpno FROM enp;

BEND };

while (iter.next())
{

Sring enpnane = iter.enane();
int enpnum=iter.enpno();

... process/output enpnane and enpnum. .

}

iter.close();

This example opens the iterator i t er in a PL/SQL block to receive data from a
SELECT statement, selects data from the ENAME and EMPNO columns of the EMP
table, then loops through the iterator to retrieve data into local variables.

Example: Use of Iterator as OUT Host Variable for SELECT INTO This example uses a

named iterator as an output host variable, taking data through a SELECT | NTO
statement. (OUT is the default for host variables in an INTO-list. For information

3-50 SQLJ Developer’s Guide and Reference

Multi-Row Query Results—SQLJ Iterators

about SELECT | NTOstatements and syntax, see "Single-Row Query
Results—SELECT INTO Statements" on page 3-32.)

Declaration:

#sgl public <static>iterator ENanelter (String enane);

(The publ i ¢ modifier is required, and st at i ¢ may be advisable if your
declaration is at class level or nested-class level.)

Executable code:

ENanel ter enameslter;
Sring deptnane;

#sgl { SELECT dnane, cursor
(SELECT ename FROM enp WHERE dept no = dept . dept no)
I NTO : dept nane, :enaneslter FROM dept WHERE deptno = 20 };

Systemout . printl n(dept nane) ;
vhi l e (enaneslter. next())

{
}

enaneslter.close();

Systemout . printl n(enaneslter.enane());

This example uses nested SELECT statements to accomplish the following:

« Select the name of department number 20 from the DEPT table, selecting it into
the output host variable dept nane.

« Query the EMP table to select all employees whose department number is 20,
selecting the resulting cursor into the output host variable enanesl t er, which
is a named iterator.

« Print the department name.

« Loop through the named iterator printing employee names. This prints the
names of all employees in the department.

In most cases, using SELECT | NTOis more convenient than using nested iterators if
you are retrieving a single row in the outer SELECT, although that option is also
available as discussed below (such as in "Example: Named Iterator Column in a
Positional Iterator" on page 3-54). Also, with nested iterators, you would have to

Basic Language Features 3-51

Multi-Row Query Results—SQLJ Iterators

process the data to determine how many rows there are in the outer SELECT. With
SELECT | NTOyou are assured of just one row.

Using lterators and Result Sets as Iterator Columns

Oracle SQLJ includes extensions that allow iterator declarations to specify columns
of type Resul t Set or columns of other iterator types declared within the current
scope. In other words, iterators and result sets can exist within iterators in Oracle
SQLJ. These column types are used to retrieve a column in the form of a cursor. This
is useful for nested SEL ECT statements that return nested table information.

The following examples are functionally identical—each uses a nested result set or
iterator (result sets or iterators in a column within an iterator) to print all the
employees in each department in the DEPT table. The first example uses result sets
within a named iterator, the second example uses named iterators within a named
iterator, and the third example uses named iterators within a positional iterator.

Here are the steps:
1. Select each DNAME (department name) from the DEPT table.

2. Do anested SELECT into a cursor to get all employees from the EMP table for
each department.

3. Putthe department names and sets of employees into the outer iterator (i t er),
which has a name column and an iterator column. The cursor with the
employee information for any given department goes into the iterator column
of that department’s row of the outer iterator.

4. Go through a nested loop that, for each department, prints the department
name and then loops through the inner iterator to print all employee names for
that department.

Example: Result Set Column in a Named Iterator This example uses a column of type
Resul t Set in a named iterator.

Declaration:

#sqgl iterator Deptlter (String dnane, ResultSet enps);

Executable code:

Deptlter iter;

#sgl iter = { SHLECT dnane, cursor

3-52 SQLJ Developer’s Guide and Reference

Multi-Row Query Results—SQLJ Iterators

(SELECT enarme FROM enp WHERE dept no = dept . dept no)
AS enps FROM dept };

while (iter.next())
{

Systemout. println(iter. dnane());
Resul t Set enanesRs = iter.enps();
vhi | e (enanesRs. next ())

{
Sring enpnane = enanesRs.get Sring(l);
Systemout . print| n(enpnarre) ;

}

enanesks. cl ose();

iter.close();

Example: Named Iterator Column in a Named lterator This example uses a named iterator
that has a column whose type is that of a previously defined named iterator (nested
iterators).

Declarations:

#sgl iterator ENanelter (Sring enane);
#sqgl iterator Deptlter (String dnane, ENanelter enps);

Executable code:

Deptlter iter;

#sqgl iter = { SHLECT dnane, cursor
(SELECT ename FROM enp WHERE dept no = dept . dept no)
AS enps FROM dept };

while (iter.next())

{
Systemout. println(iter. dnane());
ENanel ter enaneslter = iter.enps();
vhi l e (enaneslter.next())
{
Systemout . println(enaneslter.enane());
}
enaneslter.close();
}

Basic Language Features 3-53

Multi-Row Query Results—SQLJ Iterators

iter.close();

Example: Named Iterator Column in a Positional Iterator This example uses a positional
iterator that has a column whose type is that of a previously defined named iterator
(nested iterators). This uses the FETCH | NTOsyntax of positional iterators. This
example is functionally equivalent to the previous two.

Note that because the outer iterator is a positional iterator, there does not have to be
an alias to match a column name, as was required when the outer iterator was a
named iterator in the previous example.

Declarations:

#sgl iterator ENanelter (Sring enane);
#sgl iterator Deptlter (String, ENanelter);

Executable code:

Deptlter iter;

#sgl iter = { SHLECT dnane, cursor
(SELECT ename FROM enp WHERE dept no = dept . dept no)
FRCOM dept };

while (true)
{
Sring dnane = null;
ENanel ter enaneslter = null;
#sgl { FETCH :iter INTO:dnane, :enaneslter };
if (iter.endFetch()) break;
Systemout . printl n(dnane) ;
vhil e (enaneslter.next())

{
}

enaneslter.close();

Systemout . printl n(enaneslter.enane());

iter.close();

3-54 SQLJ Developer’s Guide and Reference

Assignment Statements (SET)

Assignment Statements (SET)

SQLJ allows you to assign a value to a Java host expression inside a SQL operation.
This is known as an assignment statement and is accomplished using the following
syntax:

#sgl { SET : host_exp = expression };
The host _exp is the target host expression, such as a variable or array index. The

expr essi on could be a number, host expression, arithmetic expression, function
call, or other construct that yields a valid result into the target host expression.

The default is OUT for a target host expression in an assignment statement, but you
can optionally state this explicitly:

#sgl { SET : QJT host_exp = expression };

Trying to use an | Nor | NOUT token in an assignment statement will result in an
error at translation time.

The preceding statements are functionally equivalent to the following:

#sgl { BEAN : QUT host_exp : = expression, END };

Here is a simple example of an assignment statement:
#sgl { SET :x = fool() + foo2() };
This statement assigns to x the sum of the return values of f 001() andf 002()

and assumes that the type of x is compatible with the type of the sum of the outputs
of these functions.

Consider the following additional examples:
int i2;
java.sql . Date dat;

#sql { SET :i2 = TO_NUMBER(substr('750 etc.’, 1, 3)) +
TO_NUMBER(substr('250 etc.’, 1, 3)) };

#sql { SET :dat = sysdate };

The first statement will assign to i2 the value 1000 (750 + 250). (The substr() calls
take the first three characters of the strings, or '750’ and "250°. The TO_NUMBER()
calls convert the strings to the numbers 750 and 250.)

Basic Language Features 3-55

Assignment Statements (SET)

The second statement will read the database system date and assign it to dat .

An assignment statement is especially useful when you are performing operations
on return variables from functions stored in the database. You do not need an
assignment statement to simply assign a function result to a variable, because you
can accomplish this using normal function call syntax as explained in "Stored
Procedure and Function Calls" on page 3-57. You also do not need an assignment
statement to manipulate output from Java functions, because you can accomplish
that in a normal Java statement. So you can presume that f 0o1() and f 002()
above are stored functions in the database, not Java functions.

3-56 SQLJ Developer’s Guide and Reference

Stored Procedure and Function Calls

Stored Procedure and Function Calls

SQLJ provides convenient syntax for calling stored procedures and stored functions
in the database, as described immediately below. These procedures and functions
could be written in Java, PL/ZSQL (in an Oracle database), or any other language
supported by the database.

A stored function requires a result expression in your SQLJ executable statement to
accept the return value and can optionally take input, output, or input-output
parameters as well.

A stored procedure does not have a return value but can optionally take input,
output, or input-output parameters. A stored procedure can return output through
any output or input-output parameter.

Note: Remember that instead of using the following
procedure-call and function-call syntax, you can optionally use
JPublisher to create Java wrappers for PL/SQL stored procedures
and functions, then call the Java wrappers as you would any other
Java methods. JPublisher is discussed in "JPublisher and the
Creation of Custom Java Classes" on page 6-23. For additional
information, see the Oracle8i JPublisher User’s Guide.

Calling Stored Procedures

Stored procedures do not have a return value but can take a list with input, output,
and input-output parameters. Stored procedure calls use the CALL token, as shown
below. The word "CALL" is followed by white space and then the procedure name.
There must be a space after the CALL token to differentiate it from the procedure
name. There cannot be a set of outer parentheses around the procedure call (this
differs from the syntax for function calls, as explained in "Calling Stored Functions"
on page 3-58).

#sql { CALL PROQ<PARAMLISTS) };
PRCCis the name of the stored procedure, which can optionally take a list of input,

output, and input-output parameters. PROCcan include a schema or package name
as well, such as SCOTT. MYPROC() .

Presume that you have defined the following PL/SQL stored procedure:

CREATE (R REPLACE PROCEDURE MAX _DEADLI NE (deadl i ne QJT DATE) IS
BEG N

Basic Language Features 3-57

Stored Procedure and Function Calls

SH ECT MAX(start_date + duration) |NTO deadline FROM proj ects;
END,

This reads the table PROJECTS, looks at the START _DATE and DURATI ON columns,
calculates start _date + durati onineach row, then takes the maximum
START_DATE + DURATI ONtotal and selects it into DEADLI NE, which is an output
parameter of type DATE.

In SQLJ, you can call this MAX_DEADLI| NE procedure as follows:

java. sql . Dat e maxDeadl i ne;
#sqgl { CALL MAX DEADLI NE(:out naxDeadline) };

For any parameters, you must use the host expression tokens | N (optional/default),
QUT, and | NOUT appropriately to match the input, output, and input-output
designations of the stored procedure. Additionally, the types of the host variables
you use in the parameter list must be compatible with the parameter types of the
stored procedure.

Note: If you want your application to be compatible with Oracle7,
do not include empty parentheses for the parameter list if the
procedure takes no parameters. For example:

#sql { CALL MAX_DEADLINE };
not:

#sql { CALL MAX_DEADLINE() };

Calling Stored Functions

Stored functions have a return value and can also take a list of input, output, and
input-output parameters. Stored function calls use the VALUES token, as shown
below. This syntax consists of the word "VALUES" followed by the function call. In
standard SQLJ, the function call must be enclosed in a set of outer parentheses, as
shown. In Oracle SQLJ, the outer parentheses are optional. When using the outer
parentheses, it does not matter if there is white space between the VALUES token
and the begin-parenthesis. (A VALUES token can also be used in | NSERT | NTO

t abl e VALUES syntax supported by Oracle SQL, but these situations are unrelated
semantically and syntactically.)

#sql result = { VALUES(FUNO <PARMM LI ST>)) };

3-58 SQLJ Developer’s Guide and Reference

Stored Procedure and Function Calls

Where resul t is the result expression, which takes the function return value. FUNC
is the name of the stored function, which can optionally take a list of input, output,
and input-output parameters. FUNCcan include a schema or package name, such as
SCOTT. MYFUNC() .

Referring back to the example in "Calling Stored Procedures” on page 3-57, consider
defining the stored procedure as a stored function instead, as follows:

CREATE (R REPLACE FUNCTI CN GET_MAX DEADLI NE() RETURN DATE | S
CEQLARE
DATE dead! i ne;
BEQ N
SH ECT MAX(start_date + duration) |INTO deadl i ne FROM proj ects;
RETURN deadl i ne;
END,

In SQLJ, you can call this GET_MAX_DEADLI NE function as follows:

java.sql . Dat e maxDeadl i ne;

#sgl maxDeadline = { VALUES(GET_MAX DEADLINE) };

The result expression must have a type compatible with the return type of the
function.

In Oracle SQLJ, the following syntax (outer parentheses omitted) is also allowed:
#sgl maxDeadline = { VALUES GET_MAX DEADLI NE };

For stored function calls, as with stored procedures, you must use the host
expression tokens | N (optional—default), OUT, and | NOUT appropriately to match
the input, output, and input-output parameters of the stored function. Additionally,

the types of the host variables you use in the parameter list must be compatible
with the parameter types of the stored function.

Basic Language Features 3-59

Stored Procedure and Function Calls

Notes: If you want your stored function to be portable to
non-Oracle environments, then you should use only input
parameters in the calling sequence, not output or input-output
parameters.

If you want your application to be compatible with Oracle7, then
do not include empty parentheses for the parameter list if the
function takes no parameters. For example:

#sql maxDeadline = { VALUES(GET_MAX_DEADLI NE) };
not:
#sql maxDeadline = { VALUES(GET_MAX_DEADLI NE()) };

Using lterators and Result Sets as Stored Function Returns

SQLJ supports assigning the return value of a stored function to an iterator or result
set variable, provided that the function returns a REF CURSOR type.

The following example uses an iterator to take a stored function return. Using a
result set is similar.

Example: Iterator as Stored Function Return This example uses an iterator as a return
type for a stored function, using a REF CURSOR type in the process. (REF CURSOR
types are described in "Support for Oracle REF CURSOR Types" on page 5-36.)

Presume the following function definition:

CREATE (R REPLACE PACKAGE sqlj _refcursor AS

TYPE EMP_QARTYPE | S REF OURSCR

FUNCTION job_listing (j varchar2) RETURN BEMP_QURTYPE
END sqlj _refcursor;

CREATE (R REPLACE PACKAGE BCDY sql j _refcursor AS
FUNCTION job_listing (j varchar) RETURN BW_QRTYPE | S
CEQLARE
rc BWP_CQURTYPE
BEG N
CPEN rc FCR SHLECT enane, enpno FROMenp WERE job = j;
RETURN rc;
END,
END sqlj _refcursor;

Use this function as follows.

3-60 SQLJ Developer’s Guide and Reference

Stored Procedure and Function Calls

Declaration:

#sgl public <static> iterator Enplter (String enane, int enpno);

(The publ i ¢ modifier is required, and st at i ¢ may be advisable if your
declaration is at class level or nested-class level.)

Executable code:

Enplter iter;

#sqliter = { VALUES(sq]j_refcursorjob_listing(SALES)) };

while (iter.next())
{

String empname = iter.ename();
int empnum = iter.empno();

process enpnane and enpnum..

}
iter.close();

This example calls thej ob_l i sti ng() function to return an iterator that contains
the name and employee number of each employee whose job title is "SALES". It
then retrieves this data from the iterator.

Basic Language Features 3-61

Stored Procedure and Function Calls

3-62 SQLJ Developer’s Guide and Reference

A

Key Programming Considerations

This chapter discusses key issues you must consider before developing and running
your SQLJ application, concluding with a summary and sample applications. The
following topics are discussed:

« Naming Requirements and Restrictions
« Selection of the JDBC Driver

« Connection Considerations

« Null-Handling

« Exception-Handling Basics

« Basic Transaction Control

« Summary: First Steps in SQLJ Code

Key Programming Considerations 4-1

Naming Requirements and Restrictions

Naming Requirements and Restrictions

There are four areas to consider in discussing haming requirements, naming
restrictions, and reserved words:

« theJava namespace, including additional restrictions imposed by SQLJ on the
naming of local variables and classes

« the SQLJ namespace
« the SQL namespace

= source file names

Java Namespace—Local Variable and Class Naming Restrictions

The Java namespace applies to all your standard Java statements and declarations,
including the naming of Java classes and local variables. All standard Java naming
restrictions apply, and you should avoid use of Java reserved words.

In addition, SQLJ places minor restrictions on the naming of local variables and
classes.

Note: Naming restrictions particular to host variables are
discussed in "Restrictions on Host Expressions" on page 3-31.

Local Variable Naming Restrictions

Some of the functionality of the SQLJ translator results in minor restrictions in
naming local variables.

The SQLJ translator replaces each SQLJ executable statement with a statement
block, where the SQLJ executable statement is of the standard syntax:

#sgl { SQ operation };

SQLJ may use temporary variable declarations within a generated statement block.
The name of any such temporary variables will include the following prefix:

sJT

(There are two underscores at the beginning and one at the end.)

The following declarations are examples of those that might occur in a
SQLJ-generated statement block:

4-2 SQLJ Developer’'s Guide and Reference

Naming Requirements and Restrictions

int _ sJT index;
(oj ect __SJT key;
java.sql . PreparedStatenent _ sJT stnt;

The string __sJT_ is a reserved prefix for SQLJ-generated variable names. SQLJ
programmers must not use this string as a prefix for the following:

= hames of variables declared in blocks that include executable SQL statements
= hames of parameters to methods that contain executable SQL statements

« names of fields in classes that contain executable SQL statements, or whose
subclasses or enclosed classes contain executable SQL statements

Class Naming Restrictions
Be aware of the following minor restrictions in naming classes in SQLJ applications:

= You must not declare class names that may conflict with SQLJ internal classes.
In particular, a top-level class cannot have a name of the following form if a is
the name of an existing class in the SQLJ application:

a_SJb (where a and b are legal Java identifiers)

For example, if your application class is Foo in file Foo. sql j , SQLJ generates a
profile-keys class called Foo_SJPr of i | eKeys. Do not declare a class name
that conflicts with this.

« A class containing SQLJ executable statements must not have a name that is the
same as the first component of the name of any package that includes a Java
type used in the application. Examples of class names to avoid are j ava, sql j ,
and or acl e (case-sensitive). As another example, if your SQLJ statements use
host variables whose type is abc. def . MyCl ass, then you cannot use abc as
the name of the class that uses these host variables.

To avoid this restriction, follow Java naming conventions recommending that
package names start in lowercase and class names start in uppercase.

SQLJ Namespace

The SQLJ namespace refers to #sql class declarations and the portion of #sq|l
executable statements outside the curly braces.

Note: Restrictions particular to the naming of iterator columns are
discussed in "Using Named Iterators" on page 3-40.

Key Programming Considerations 4-3

Naming Requirements and Restrictions

Avoid using the following SQLJ reserved words as class names for declared
connection context classes or iterator classes, inwi t h ori npl emrent s clauses, or in
iterator column type declaration lists:

« iterator
= context
= Wth

For example, do not have an iterator class or instance called i t er at or ora
connection context class or instance called cont ext .

Note, however, that it is permissible to have a stored function return variable whose
name is any of these words.

SQL Namespace

The SQL namespace refers to the portion of a SQLJ executable statement inside the
curly braces. Normal SQL naming restrictions apply here.

Note, however, that host expressions follow rules of the Java namespace, not the
SQL namespace. This applies to the name of a host variable and to everything
between the outer parentheses of a host expression.

File Name Requirements and Restrictions

SQLJ source files have the . sql j file name extension. If the source file declares a
public class (maximum of one), then the base name of the file must match the name
of this class (case-sensitive). If the source file does not declare a public class, then
the file name must still be a legal Java identifier, and it is recommended that the file
name match the name of the first defined class.

For example, if you define the public class MySour ce in your source file, then your
file name must be:

M/Sour ce. sql j

Note: These file naming requirements follow the Java Language
Specification and are not SQLJ-specific. These requirements do not
directly apply in the Oracle8i server, but it is still advisable to
adhere to them.

4-4 SQLJ Developer’'s Guide and Reference

Selection of the JDBC Driver

Selection of the JDBC Driver

You must consider which JDBC driver will be appropriate for your situation and
whether it may be advantageous to use different drivers for translation and
runtime. You must choose or register the appropriate driver class for each and then
specify the driver in your connection URL.

This discussion begins with a brief description of the Oracle JDBC drivers, but SQLJ
supports any standard JDBC driver.

Note: Your application will require an Oracle JDBC driver if you
use the Oracle customizer on your application, even if your code
does not actually use Oracle-specific features.

Overview of the Oracle JDBC Drivers
Oracle provides the following JDBC drivers:

« Thin driver, a 100% Java driver for client-side use without an Oracle
installation, particularly with applets

« OCI drivers (OCI8 and OCI7) for client-side use with an Oracle client
installation

« server-side Thin driver, which is functionally the same as the client-side Thin
driver, but is for code that runs inside an Oracle server and needs to access a
remote server, including middle-tier scenarios

« server-side internal driver for code that runs inside the target server (that is,
inside the Oracle server that it must access)

Oracle provides JDK 1.2.x-compatible and JDK 1.1.x-compatible versions of the
client-side drivers. There are only JDK 1.2.x-compatible versions of the server-side
drivers, because the Oracle JServer JVM is a JDK 1.2.x environment.

The rest of this section provides a brief overview of each driver. For more
information about the drivers and about which might be most appropriate for your
particular situation, see the Oracle8i JDBC Developer’s Guide and Reference.

Remember that your choices may differ between translation time and runtime. For
example, you may want to use the Oracle JDBC OCI8 driver at translation time for
semantics-checking but the Oracle JDBC Thin driver at runtime.

Key Programming Considerations 4-5

Selection of the JDBC Driver

Core Functionality The core functionality of all these drivers is the same. They
support the same feature set, syntax, programming interfaces, and Oracle
extensions.

All Oracle JDBC drivers are supported by the oracl e. j dbc. dri ver. Oracl eDri ver
class.

Thin driver The Oracle JDBC Thin driver is a platform-independent, 100% pure Java
implementation that uses Java sockets to connect directly to the Oracle server. It can
be downloaded into a browser simultaneously with the Java applet being run.

The Thin driver supports only TCP/IP protocol and requires a TNS listener to be
listening on TCP/IP sockets from the database server. When the Thin driver is used
with an applet, the client browser must have the capability to support Java sockets.

OCI Drivers The Oracle JDBC OCI drivers access the database by calling the Oracle
Call Interface (OCI) directly from Java, providing the highest compatibility with the
different Oracle 7, 8, and 8i versions. These drivers support all installed Net8
adapters, including IPC, named pipes, TCP/IP, and IPX/SPX.

The use of native methods to call C entry points makes the OCI drivers dependent
on the Oracle platform, requiring an Oracle client installation that includes Net8.
Therefore they are not suitable for applets.

Server-Side Thin Driver The Oracle JDBC server-side Thin driver offers the same
functionality as the client-side Thin driver, but runs inside an Oracle database and
accesses a remote database. This is useful in accessing a remote Oracle server from
an Oracle server acting as a middle tier, or, more generally, to access one Oracle
server from inside another, such as from any Java stored procedure or Enterprise
JavaBeans.

Server-Side Internal Driver The Oracle JDBC server-side internal driver provides
support for any Java code that runs inside the target Oracle database where the SQL
operations are to be performed. The server-side internal driver allows the JServer
JVM to communicate directly with the SQL engine. The server-side internal driver is
the default JIDBC driver for SQLJ code running as a stored procedure, stored
function, trigger, Enterprise JavaBean, or CORBA object in the Oracle8i server.

Driver Selection for Translation

Use SQLJ option settings, either on the command line or in a properties file, to
choose the driver manager class and specify a driver for translation.

4-6 SQLJ Developer’'s Guide and Reference

Selection of the JDBC Driver

Use the SQLJ - dri ver option to choose any driver manager class other than
O acl eDri ver, which is the default.

Specify the particular JDBC driver to choose (such as Thin or OCI8 for an Oracle
database) as part of the connection URL you specify in the SQLJ - ur | option.

For information about these options, see "Connection Options" on page 8-30.

You will typically, but not necessarily, use the same driver that you use in your
source code for the runtime connection.

Note: Remember that the - dri ver option does not choose a
particular driver. It registers a driver manager class that might be
used for multiple drivers (such as Or acl eDri ver, which is used
for all the Oracle JDBC drivers).

Driver Selection and Registration for Runtime

To connect to the database at runtime, you must register one or more driver
managers that will understand the URLSs you specify for any of your connection
instances, whether they are instances of the

sqlj.runtinme.ref. Defaul t Cont ext class or of any connection context classes
that you declare.

If you are using an Oracle JDBC driver and create a default connection using the
standard Or acl e. connect () method (discussed below, under "Single Connection
or Multiple Connections Using DefaultContext" on page 4-8), then SQLJ handles
this automatically—Or acl e. connect () registers the

oracl e.jdbc.driver. Oracl eDriver class.

If you are using an Oracle JDBC driver, but do not use Or acl e. connect (), then
you must manually register the Or acl eDri ver class, as follows:

Dri ver Manager . regi ster Dri ver (new oracl e. j doc. dri ver. Gacl eDriver());

If you are not using an Oracle JDBC driver, then you must register some
appropriate driver class, as follows:

Dri ver Manager . r egi ster Dri ver (new nydri ver. jdbc. dri ver. MDriver());

In any case, you must also set your connection URL, user name, and password. This

is described in "Single Connection or Multiple Connections Using DefaultContext"
on page 4-8. This section also further discusses the Or acl e. connect () method.

Key Programming Considerations 4-7

Connection Considerations

Connection Considerations

When deciding what database connection or connections you will need for your
SQLJ application, consider the following:

« Will you need just one database connection or multiple connections?

« Ifusing multiple connections (possibly to multiple schemas), will each
connection use SQL entities of the same name—tables of the same name,
columns of the same name and datatypes, stored procedures of the same name
and signature, and so on?

« Will you need different connections for translation and runtime, or will the
same suffice for both?

A SQLJ executable statement can specify a particular connection context instance
(either of Def aul t Cont ext or of a declared connection context class) for its
database connection. Alternatively, it can omit the connection context specification
and, thereby, use the default connection (an instance of Def aul t Cont ext that you
previously set as the default).

Note: If your database operations will use different sets of SQL
entities, then you will typically want to declare and use additional
connection context classes. This is discussed in "Connection
Contexts" on page 7-2.

Single Connection or Multiple Connections Using DefaultContext

This section discusses scenarios where you will use connection instances of only the
Def aul t Cont ext class.

This is typical if you are using a single connection, or multiple connections that use
SQL entities with the same names and datatypes.

Single Connection

For a single connection, typically use one instance of the Def aul t Cont ext class,
specifying the database URL, user name, and password when you construct your
Def aul t Cont ext object.

You can use the connect () method of theor acl e. sql j . runti me. O acl e class
to accomplish this. This method has several signatures, including ones that allow
you to specify user name, password, and URL, either directly or using a properties
file. In the following example, the properties file connect . properti es is used:

4-8 SQLJ Developer’'s Guide and Reference

Connection Considerations

Q acl e. connect (/A ass. cl ass, "connect. properties");

(Where Myd ass is the name of your class. There is an example of
connect . propertiesin[O acl e Hone]/sqlj/deno,and also in "Set Up the
Runtime Connection” on page 2-9.)

You must edit connect . pr oper ti es appropriately and package it with your
application. In this example, you must also import the
oracle.sqglj.runtine. O acl e class.

Alternatively, you can specify user name, password, and URL directly:

Q acl e. connect ("j dbc: oracl e: thi n: @ocal host : 1521: orcl ", "scott", "tiger");

In this example, the connection will use the JDBC Thin driver to connect user
scott (passwordti ger) to a database on the machine | ocal host through port
1521, where or cl is the SID of the database to connect to on that machine.

Either of these examples creates an instance of the Def aul t Cont ext class and
installs it as your default connection. It is not necessary to do anything with the
Def aul t Cont ext instance directly.

Once you have completed these steps, you do not need to specify the connection for
any of the SQLJ executable statements in your application if you want them all to
use the default connection.

Note that in using a Thin driver, the URL must include the hostname, port number,
and SID, as in the preceding example. In using an OCI driver, you can specify an
Oracle SID, or no SID if you intend to use the client’s default account. Alternatively,
you can use name-value pairs (see the Oracle8i JDBC Developer’s Guide and Reference
for more information). The first example here will connect to the database with SID
or cl ; the second example will connect to the client’s default account:

j dbc: oracl e: oci 8: @rcl
jdbc: oracl e: oci 8: @

Key Programming Considerations 4-9

Connection Considerations

Notes:

« Oracl e. connect () will not set your default connection if
one had already been set. In that case, it returns nul | . (This
functionality allows you to use the same code on a client or in
the server.) If you do want to override your default connection,
use the static set Def aul t Cont ext () method of the
Def aul t Cont ext class, as described in the next section.

« TheOracl e. connect () method defaultsto af al se setting
of the auto-commit flag; however, it also has signatures that let
you set it explicitly. See "More About the Oracle Class" on
page 4-14. For general information about auto-commit
functionality, see "Basic Transaction Control" on page 4-28. (In
Oracle JDBC, the auto-commit flag defaults to t r ue.)

= You can optionally specify get Cl ass(), instead of
MyCl ass. cl ass, inthe Oracl e. connect () call, as long as
you are not calling get Cl ass() from a static method. This is
done in some of the SQLJ demo applications.

Multiple Connections

For multiple connections, you can create and use additional instances of the
Def aul t Cont ext class, while optionally still using the default connection created
under "Single Connections" above.

You can use the Or acl e. get Connect i on() method to instantiate
Def aul t Cont ext , as in the following examples.

First, consider a case where you want most statements to use the default connection
created above, but other statements to use a different connection. You must create
one additional instance of Def aul t Cont ext :

Def aul t Gontext ctx = Cracl e. get Gonnection (
"jdbc: oracl e:thi n: @ocal host 2: 1521: orcl 2", "bill", "lion");

(Or ct x could also use the scot t /t i ger schema, if you want to perform multiple
sets of operations on the same schema.)

When you want to use the default connection, it is not necessary to specify a
connection context:

#sgl { SQ operation };

4-10 SQLJ Developer’s Guide and Reference

Connection Considerations

When you want to use the additional connection, specify ct x as the connection:

#sql [ctx] { SQ operation};

Next, consider situations where you want to use multiple connections where each of
them is a named Def aul t Cont ext instance. This allows you to switch your
default back and forth, for example.

The following statements establish multiple connections to the same schema (in
case you want to use multiple database sessions or transactions, for example).
Instantiate the Def aul t Cont ext class for each connection you will need:

Def aul t Gontext ctx1 = O acl e. get Gonnecti on (

"jdbc: oracl e:thin: @ocal host 1: 1521: orcl 1", "scott", "tiger");
Def aul t Gontext ctx2 = Oracl e. get Gonnecti on (

"jdbc: oracl e:thin: @ocal host 1: 1521: orcl 1", "scott", "tiger");

This creates two connection context instances that would use the same schema,
connectingtoscott/ti ger on database SID or ¢l 1 on the machinel ocal host 1,
using the Oracle JDBC Thin driver.

Now consider a case where you would want multiple connections to different
schemas. Again, instantiate the Def aul t Cont ext class for each connection you
will need:

Def aul t Gontext ctx1 = O acl e. get Gonnecti on (

"jdbc: oracl e:thin: @ocal host 1: 1521: orcl 1", "scott", "tiger");
Def aul t Gont ext ctx2 = Oracl e. get Gonnecti on (

"jdbc: oracl e:thi n: @ocal host 2: 1521: orcl 2", "bill", "lion");

This creates two connection context instances that both use the Oracle JDBC Thin
driver but use different schemas. The ct x1 object connectsto scott/ti ger on
database SID or cl 1 on the machine | ocal host 1, while the ct x2 object connects
tobi | I /1i on on database SID or cl 2 on the machine | ocal host 2.

There are two ways to switch back and forth between these connections for the
SQLJ executable statements in your application:

« Ifyou switch back and forth frequently, then you can specify the connection for
each statement in your application:

#sgl [ctx1] { SQ@ operation };

#sgl [ctx2] { SQ@ operation };

Key Programming Considerations 4-11

Connection Considerations

or:

Note: Remember to include the square brackets around the
connection context instance name; they are part of the syntax.

If you use either of the connections several times in a row within your code
flow, then you can periodically use the static set Def aul t Cont ext () method
of the Def aul t Cont ext class to reset the default connection. This way, you
can avoid specifying connections in your SQLJ statements.

Def aul t Cont ext . set Def aul t Gont ext (ct x1);
#sql { SQ operation}; // These three statenents all use ctxl

#sgl { SQ operation };
#sgl { SQ operation };

Def aul t Gont ext . set Def aul t Gont ext (ct x2) ;

#sql { SQ operation}; // These three statenents all use ctx2
#sgl { SQ operation };
#sgl { SQ operation };

Note: Because the preceding statements do not specify connection
contexts, at translation time they will all be checked against the
default connection context.

Closing Connections
It is advisable to close your connection context instances when you are done,
preferably inafi nal | y clause (in case your application terminates with an
exception) and at ry/ cat ch block.

The Def aul t Cont ext class (as well as any other connection context class) includes
acl ose() method. Calling this method closes the SQLJ connection context
instance and, by default, also closes the underlying JDBC connection instance and
the physical database connection.

In addition, the or acl e. sgl j . runti me. Or acl e class has a static cl ose()
method to close the default connection only.

4-12 SQLJ Developer’s Guide and Reference

Connection Considerations

In the following example, presume ct x is an instance of any connection context
class:

finally
{
}

ctx. cl ose();

or (if the fi nal | y clause is not withinat ry/ cat ch block):

finally
{
}

try { ctx.close(); } catch(SQException ex) {...}

Or, to close the default connection, the Or acl e class also provides a cl ose()
method:

finally
{
}

Qacl e.close();

Always commit or roll back any pending changes before closing the connection.
Whether there would be an implicit COMM T operation as the connection is closed is
not specified in the JDBC standard and may vary from vendor to vendor. For
Oracle, there is an implicit COMM T when a connection is closed, and an implicit
ROLLBACK when a connection is garbage-collected without being closed, but it is
not advisable to rely on these mechanisms.

Note: Itisalso possible to close a connection context instance
without closing the underlying connection (in case the underlying
connection is shared). See "Closing Shared Connections" on

page 7-40.

Key Programming Considerations 4-13

Connection Considerations

Multiple Connections Using Declared Connection Context Classes

For multiple connections that use different sets of SQL entities, it is advantageous to
use connection context declarations to define additional connection context classes.
Having a separate connection context class for each set of SQL entities that you use
allows SQLJ to do more rigorous semantics-checking of your code.

See "Connection Contexts" on page 7-2 for more information.

More About the Oracle Class

Oracle SQLJ provides the or acl e. sql j . runti nme. Or acl e class to simplify the
process of creating and using instances of the Def aul t Cont ext class.

The static connect () method instantiates a Def aul t Cont ext object and
implicitly installs this instance as your default connection. You do not need to
assign or use the Def aul t Cont ext instance returned by connect () . If you had
already established a default connection, then connect () returnsnul | .

The static get Connect i on() method simply instantiates a Def aul t Cont ext
object. Assign the returned instance and use it as desired.

Both methods register the Oracle JDBC driver manager automatically if the
oracl e.jdbc.driver. O acl eDri ver classis found in your CLASSPATH.

The static cl ose() method closes the default connection.

Signatures of the Oracle.connect() and Oracle.getConnection() Methods
Each method has signatures that take the following parameters as input:

« URL (String),user name (St ri ng), password (St ri ng)

« URL (String), user name (St ri ng), password (St ri ng), auto-commit flag
(bool ean)

« URL(String),java.util.Properti es object containing properties for the
connection

« URL(String),java.util.Properti es object, auto-commit flag (bool ean)

« URL (St ri ng) fully specifying the connection, including user name and
password

The following is an example of the format of a URL string specifying user name
(scot t)and password (t i ger) when using the Oracle JDBC drivers, in this
case the Thin driver:

4-14 SQLJ Developer’s Guide and Reference

Connection Considerations

"jdbc: oracl e: thin:scott/tiger@ocal host: 1521: orcl "

« URL (String), auto-commit flag (bool ean)

« java.l ang. Cl ass object for class used to load properties file, name of
properties file (St ri ng)

« java.l ang. C ass object, name of properties file (St r i ng), auto-commit flag
(bool ean)

« java.l ang. C ass object, name of properties file (St r i ng), user name
(String), password (Stri ng)

« java.l ang. C ass object, name of properties file (St r i ng), user name
(St ring), password (St ri ng), auto-commit flag (bool ean)

= JDBC connection object (Connect i on or Or acl eConnecti on)
= SQLJ connection context object

These last two signatures inherit an existing database connection. When you inherit
a connection, you will also inherit the auto-commit setting of that connection.

Some examples of connect () and get Connect i on() calls are under "Single
Connection or Multiple Connections Using DefaultContext" on page 4-8.

Note: The auto-commit flag specifies whether SQL operations are
automatically committed. For the Or acl e. connect () and

Oracl e. get Connecti on() methods only, the defaultisf al se.
If that is the setting you want, then you can use one of the
signatures that does not take auto-commit as input. (However,
anytime you use a constructor to create an instance of a connection
context class, including Def aul t Cont ext, you must specify the
auto-commit setting.)

(In Oracle JDBC, the default for the auto-commit flag ist r ue.)

The auto-commit flag is discussed in "Basic Transaction Control" on
page 4-28.

Optional Oracle.close() Method Parameters

In using the Or acl e. cl ose() method to close the default connection, you have
the option of specifying whether or not to close the underlying physical database
connection. By default it is closed. This is relevant if you are sharing this physical

Key Programming Considerations 4-15

Connection Considerations

connection between multiple connection objects, either SQLJ connection context
instances or JDBC connection instances.
To keep the underlying physical connection open:

Q acl e. cl ose(Gonnect i onCont ext . KEEP_CONNECTI ON) ;

To close the underlying physical connection:
Q acl e. cl ose(Gonnect i onCont ext . ALCBE_ CONNECTI ON) ;

KEEP_CONNECTI ONand CLOSE_CONNECTI ON are static constants of the
Connect i onCont ext interface.

For more information about using these parameters and about shared connections,
see "Closing Shared Connections" on page 7-40.

More About the DefaultContext Class

Thesqlj.runtine.ref. Defaul t Context class provides a complete default
implementation of a connection context class. As with classes created using a
connection context declaration, the Def aul t Cont ext class implements the
sqlj.runtinme. Connecti onCont ext interface. (This interface is described in
"Implementation and Functionality of Connection Context Classes" on page 7-9.)

The Def aul t Cont ext class has the same class definition that would have been
generated by the SQLJ translator from the declaration:

#sqgl public context Default Context;

DefaultContext Methods
The Def aul t Cont ext class has four methods of note:

« get Connecti on() —Gets the underlying JDBC connection object. This is
useful if you must use JDBC in your application for dynamic SQL operations.
You can also use the set Aut oConmi t () method of the underlying JDBC
connection object to set the auto-commit flag for the connection.

« setDefaultContext()—Thisisastatic method that sets the default
connection your application uses; it takes a Def aul t Cont ext instance as
input. SQLJ executable statements that do not specify a connection context
instance will use the default connection that you define using this method (or
that you define using the Or acl e. connect () method).

4-16 SQLJ Developer’s Guide and Reference

Connection Considerations

« get Defaul t Cont ext () —Thisisastatic method that returns the
Def aul t Cont ext instance currently defined as the default connection for your
application (through earlier use of the set Def aul t Cont ext () method).

« cl ose()—Like any connection context class, the Def aul t Cont ext class
includes a cl ose() method to close the connection context instance.

The get Connecti on() and cl ose() methods are specified in the
sqlj.runtinme. Connecti onCont ext interface.

Note: On aclient, get Def aul t Cont ext () returns nul | if
set Def aul t Cont ext () was not previously called. In the server,
it returns the default connection (the connection to the server itself).

DefaultContext Constructors

It is typical to instantiate Def aul t Cont ext using the Or acl e. connect () or
Oracl e. get Connecti on() method. If you want to create an instance directly,
however, there are five constructors for Def aul t Cont ext , which take the
following parameters as input:

« URL (String),user name (St ri ng), password (St ri ng), auto-commit
(bool ean)

« URL(String),java.util.Properti es object, auto-commit (bool ean)

« URL (St ri ng fully specifying connection and including user name and
password), auto-commit setting (bool ean)

The following is an example of the format of a URL string specifying user name
(scot t)and password (t i ger) when using the Oracle JDBC drivers, in this
case the Thin driver:

"jdbc: oracl e: thin:scott/tiger@ocal host: 1521: or cl "

« JDBC connection object
= SQLJ connection context object

The last two inherit an existing database connection. When you inherit a
connection, you will also inherit the auto-commit setting of that connection.

Following is an example of constructing a Def aul t Cont ext instance:

Def aul t Cont ext def ct x = new Def aul t Gont ext
("jdbc:oracl e:thin: @ocal host: 1521: orcl ", "scott", "tiger", false);

Key Programming Considerations 4-17

Connection Considerations

It is important to note that connection context class constructors, unlike the
O acl e. connect () method, require an auto-commit setting.

Notes:

= To use any of the first three constructors above, you must first
register your JDBC driver. This happens automatically if you
are using an Oracle JDBC driver and call Or acl e. connect ().
Otherwise, see "Driver Selection and Registration for Runtime"
on page 4-7.

= Any connection context class that you declare will have the
same constructor signatures as the Def aul t Cont ext class.

« When using the constructor that takes a JDBC connection
object, do not initialize the connection context instance with a
null JDBC connection.

= The auto-commit setting determines whether SQL operations
are automatically committed. For more information, see "Basic
Transaction Control" on page 4-28.

Optional DefaultContext close() Method Parameters

When you close a connection context instance (of the Def aul t Cont ext class or
any other class), you have the option of specifying whether or not to close the
underlying physical database connection. By default it is closed. This is relevant if
you are sharing the physical connection between multiple connection objects, either
SQLJ connection context instances or JDBC connection instances. The following
examples presume a Def aul t Cont ext instance def ct x.

To keep the underlying physical connection open:
def ct x. cl ose(Gonnect i onCont ext . KEEP_CONNECTI ON) ;

To close the underlying physical connection:
def ct x. ¢l ose(Gonnect i onCont ext . ALCBE_ CONNECTI QN ;

KEEP_CONNECTI ONand CLOSE_CONNECTI ON are static constants of the
Connect i onCont ext interface.

For more information about using these parameters and about shared connections,
see "Closing Shared Connections" on page 7-40.

4-18 SQLJ Developer’s Guide and Reference

Connection Considerations

Connection for Translation

If you want to use online semantics-checking during translation, you must specify a
database connection for SQLJ to use—these are referred to as exemplar schemas and
are further discussed in "Connection Context Concepts" on page 7-2

You can use different connections for translation and runtime; in fact, it is often
necessary or preferable to do so. It might be necessary if you are not developing in
the same kind of environment that your application will run in. But even if the
runtime connection is available during translation, it might be preferable to create
an account with a narrower set of resources so that your online checking will be
tighter. This would be true if your application uses only a small subset of the SQL
entities available in the runtime connection. Your online checking would be tighter
and more meaningful if you create an exemplar schema consisting only of SQL
entities that your application actually uses.

Use the SQLIJ translator connection options (- ur | , - user, and - passwor d), either
on the command line or in a properties file, to specify a connection for translation.

For information about these options, see "Connection Options" on page 8-30.

Connection for Customization

Generally speaking, Oracle customization does not require a database connection;
however, Oracle SQLJ does support customizer connections. This is useful in two
circumstances:

« Ifyou are using the Oracle customizer with the opt col s option enabled, then a
connection is required. This option allows iterator column type and size
definitions for performance optimization.

« Ifyou are using the SQLChecker Cust om zer, a specialized customizer that
performs semantics-checking on profiles, then a connection is required if you
are using an online checker (which is true by default).

The opt col s option is specific to the Oracle customizer. See "Oracle Customizer
Column Definition Option (optcols)" on page 10-25.

The SQLChecker Cust om zer is invoked through the Oracle customizer harness
veri fy option. See "SQLCheckerCustomizer for Profile Semantics-Checking" on
page 10-38.

Use the customizer harness user, passwor d, ur |, and dri ver options to specify
connection parameters for whatever customizer you are using, as appropriate. See
"Customizer Harness Options for Connections" on page 10-17.

Key Programming Considerations 4-19

Null-Handling

Null-Handling

Java primitive types (such asi nt, doubl e, or f | oat) cannot have null values,
which you must consider in choosing your result expression and host expression

types.

Wrapper Classes for Null-Handling

SQLJ consistently enforces retrieving SQL nulls as Java nulls, in contrast to JDBC,
which retrieves nulls as 0 or f al se for certain datatypes. Therefore, do not use Java
primitive types in SQLJ for output variables in situations where a SQL null may be
received, because Java primitive types cannot take null values.

This pertains to result expressions, output or input-output host expressions, and
iterator column types. If the receiving Java type is primitive and an attempt is made
to retrieve a SQL null, thenasql j . runti ne. SQLNul | Excepti on is thrown, and
no assignment is made.

To avoid the possibility of null values being assigned to Java primitives, use the
following wrapper classes instead of primitive types:

= java.lang. Bool ean
= java.lang.Byte

= java.lang. Short

= java.lang.Integer
= java.lang. Long

« java.lang. Doubl e
« java.lang. Fl oat

In case you must convert back to a primitive value, each of these wrapper classes
has an xxxVal ue() method. For example, i nt Val ue() returnsani nt value from
an | nt eger objectand f | oat Val ue() returnsaf | oat value from a Fl oat
object. Do this as in the following example, presuming i nt obj isan | nt eger
object:

int j =intobj.intValue();

4-20 SQLJ Developer’s Guide and Reference

Null-Handling

Notes:

=« SQLNul | Excepti on is a subclass of the standard
java. sql . SQLExcept i on class. See "Using SQLException
Subclasses" on page 4-26.

« Because Java objects can have null values, there is no need in
SQLJ for indicator variables such as those used in other host
languages (C, C++, and COBOL for example).

Examples of Null-Handling
The following examples show the use of the j ava. | ang wrapper classes to handle
null data.

Example: Null Input Host Variable In the following example, a Fl oat object is used to
pass a null value to the database. You cannot use the Java primitive type f | oat to
accomplish this.

Example:

int enpno = 7499;
Hoat commission = nul |;

#sgl { UPDATE enp SET comm = : commi ssi on WHERE enpno = : enpno };

Example: Null Iterator Rows In the following example, a Doubl e column type is used
in an iterator to allow for the possibility of null data.

For each employee in the EMP table whose salary is at least $50,000, the employee
name (ENAME) and commission (COVM are selected into the iterator. Then each row
is tested to determine if the COMMfield is, in fact, null. If so, it is processed
accordingly.

Presume the following declaration:

#sqgl iterator Enpl oyeelter (String enane, Doubl e comm);

Example:

Enpl oyeel ter ei;
#sgl ei = { SELECT enanme, conm FROMenp WHERE sal >= 50000 };

vhile (ei.next())

Key Programming Considerations 4-21

Null-Handling

{
if (ei.comm{) == null)
Systemout. println(ei.enange() + " is not on commission.");
}
ei.close();

4-22 SQLJ Developer’s Guide and Reference

Exception-Handling Basics

Exception-Handling Basics

This section covers the basics of handling exceptions in your SQLJ application,
including requirements for error-checking.

SQLJ and JDBC Exception-Handling Requirements

Because SQLJ executable statements result in JDBC calls through sql j . runt i e,
and JDBC requires SQL exceptions to be caught or thrown, SQLJ also requires SQL
exceptions to be caught or thrown in any block containing SQLJ executable
statements. Your source code will generate errors during compilation if you do not
include appropriate exception-handling.

Handling SQL exceptions requires the j ava. sql . SQLExcept i on class, which will
be available to you if you import the j ava. sqgl . * package.

Example: Exception Handling This example demonstrates the kind of basic
exception-handling required of SQLJ applications, with a mai n method with a
t ry/ cat ch block, and another method which is called from nmai n and throws
exceptions back to mai n when encountered.

/* Inport SQLExceptions class. The SQ.Exception cones from
JDBC. Executabl e #sql clauses result in calls to JDBC so nethods
cont ai ni ng execut abl e #sqgl clauses nust either catch or throw
SQ Except i on.
*/
inport java.sql.* ;
inport oracle.sqlj.runtime. Oacle;

/] iterator for the select
#sgl iterator M/iter (Sring | TEM NAME) ;

public class Testlnstall SQJ

{
/1 Main net hod
public static void main (String args[])
{

try {
/* if you're using a non-Qacle JDBC Driver, add a call here to

Dri ver Manager . regi sterDriver() to register your Driver
*/

/] set the default connection to the UR., user, and password

Key Programming Considerations 4-23

Exception-Handling Basics

/1 specified in your connect.properties file
Q acl e. connect (Test I nstal | SQLJ. cl ass, "connect. properties");

Testlnstal | SQJ ti = new Testlnstal | SQJ();
ti.runExanpl e();

} catch (SQException e) {
Systemerr.printIn("Eror running the exanple: " + e);

}

} //BEnd of nethod nain

//Method that runs the exanpl e
voi d runExanpl e() throws SQException

{
//1ssue SQL command to clear the SALES tabl e
#sql { DELETE FROM SALES };
#sol { | NSERT | NTO SALES(| TEM NAME) VALUES (" Hello, SQJ!")}:

Mlter iter;
#sql iter = { SEHLECT | TEM NAME FROM SALES };

vhile (iter.next()) {
Systemout.printin(iter. TEMNAME));

}
}
}

Processing Exceptions

This section discusses ways to process and interpret exceptions in your SQLJ
application. During runtime, exceptions may come from any of the following:

« SQLJruntime
« JDBC driver
« RDBMS

Errors originating in the SQLJ runtime are listed in "Runtime Messages" on
page B-44.

Errors originating in the Oracle JDBC driver are listed in the Oracle8i JIDBC
Developer’s Guide and Reference.

4-24 SQLJ Developer’s Guide and Reference

Exception-Handling Basics

Errors originating in the Oracle RDBMS are listed in the Oracle8i Error Messages
reference.

Printing Error Text

The example in the previous section showed how to catch SQL exceptions and
output the error messages, which is repeated again here:

try {

} catch (SQException e) {
Systemerr.printIn("Eror running the exanple: " + e);

}

This will print the error text from the SQLExcept i on object.

You can also retrieve error information using the SQLExcept i on class
get Message(), get Error Code(), and get SQLSt at e() methods, as described
in the next section.

Printing the error text as in this example prints the error message with some
additional text, such as "SQLException".

Retrieving SQL States and Error Codes

Thej ava. sql . SQLExcept i on class and subclasses include the get Message(),
get Error Code(), and get SQLSt at e() methods. Depending on where the
exception originated and how error exceptions are implemented there, these
methods provide additional information as follows:

« getMessage()

If the error originates in the SQLJ runtime or JDBC driver, this method returns
the error message with no prefix. If the error originates in the RDBMS, it returns
the error message prefixed by the ORA number.

« getErrorCode()

If the error originates in the SQLJ runtime, this method returns no meaningful
information. If the error originates in the JDBC driver or RDBMS, it returns the
five-digit ORA number.

« getSQState()

Key Programming Considerations 4-25

Exception-Handling Basics

If the error originates in the SQLJ runtime, this method returns a five-digit code
indicating the SQL state. If the error originates in the JDBC driver, it returns no
meaningful information. If the error originates in the RDBMS, it returns the
five-digit SQL state. Your code should be prepared to handle a null return.

The following example prints the error message as in the preceding example, but
also checks the SQL state.

try {
} catch (SQException e) {
Systemerr.printIn("Eror running the exanple: " + e);

Sring sql Sate = e.get SQAS ate();
Systemerr.printIn("SQL state =" + sql Sate);

Using SQLException Subclasses

For more specific error-checking, use any available and appropriate subclasses of
thej ava. sql . SQLExcept i on class.

SQLJ provides one such subclass, the sql j . runti me. Nul | Except i on class,
which you can catch in situations where a null value might be returned into a Java
primitive variable. (Java primitives cannot handle nulls.)

For batch-enabled environments, there is also the standard
j ava. sql . Bat chUpdat eExcept i on subclass. See "Error Conditions During
Batch Execution" on page A-15 for further discussion.

When you use a SQLExcept i on subclass, catch the subclass exception first, before
catching a SQLExcept i on, as in the following example:

try {
} catch (SQNUI | Exception ne) {
Systemerr.printin("Nul'l val ue encountered: " + ne); }

catch (SQException e) {
Systemerr.printin("Eror running the exanple: " + €); }

4-26 SQLJ Developer’s Guide and Reference

Exception-Handling Basics

This is because a subclass exception can also be caught as a SQLExcept i on. If you
catch SQLExcept i on first, then execution would not drop through for any special
processing you want to use for the subclass exception.

Key Programming Considerations 4-27

Basic Transaction Control

Basic Transaction Control
This section discusses how to manage your changes to the database.

For information about SQLJ support for more advanced transaction control
functions—access mode and isolation level—see "Advanced Transaction Control"
on page 7-32.

Overview of Transactions

A transaction is a sequence of SQL operations that Oracle treats as a single unit. A
transaction begins with the first executable SQL statement after any of the
following:

= connection to the database

« COW T (committing changes to the database, either automatically or manually)
» ROLLBACK (canceling changes to the database)

A transaction ends with a COVMM T or ROLLBACK operation.

Note: In the Oracle database, all DDL commands (such as CREATE
and ALTER) include an implicit COMM T. This will commit not only
the DDL command, but any preceding DML commands (I NSERT,
DELETE, UPDATE) that had not yet been committed or rolled back.

Automatic Commits versus Manual Commits

In using SQLJ or JDBC, you can either have your changes automatically committed
to the database or commit them manually. In either case, each COMM T operation
starts a new transaction. You can specify that changes be committed automatically
by enabling the auto-commit flag, either when you define a SQLJ connection, or by
using the set Aut oCommi t () method of the underlying JDBC connection object of
an existing connection. You can use manual control by disabling the auto-commit
flag and using SQLJ COVMM T and ROLLBACK statements.

Enabling auto-commit may be more convenient, but gives you less control. You
have no option to roll back changes, for example. In addition, some SQLJ or JDBC
features are incompatible with auto-commit mode. For example, you must disable
the auto-commit flag for update batching or SELECT FOR UPDATE syntax to work

properly.

4-28 SQLJ Developer’s Guide and Reference

Basic Transaction Control

Specifying Auto-Commit as You Define a Connection

When you use the Or acl e. connect () or Or acl e. get Connecti on() method
to create a Def aul t Cont ext instance and define a connection, the auto-commit
flag is set to f al se by default. There are signatures of these methods, however, that
allow you to set this flag explicitly. The auto-commit flag is always the last
parameter.

The following is an example of instantiating Def aul t Cont ext and using the
default f al se setting for auto-commit mode:

QO acl e. get Gnnecti on (
"jdbc: oracl e:thin: @ocal host : 1521: orcl ", "scott", "tiger");

Or you can specify at r ue setting:

QO acl e. get Gnnecti on (
"jdbc: oracl e:thin: @ocal host : 1521: orcl ", "scott", "tiger", true);

For the complete list of signatures for O acl e. connect () and
O acl e. get Connecti on(), see "More About the Oracle Class" on page 4-14.

If you use a constructor to create a connection context instance, either of
Def aul t Cont ext or of a declared connection context class, you must specify the
auto-commit setting. Again, it is the last parameter, as in the following example:

Def aul t Context ctx = new Def aul t Gontext (
"jdbc: oracl e:thin: @ocal host : 1521: orcl ", "scott", "tiger", fal se);

For the complete list of signatures for Def aul t Cont ext constructors, see "More
About the DefaultContext Class" on page 4-16.

If you have reason to create a JDBC Connect i on instance directly, then the
auto-commit flag is set to t r ue by default if your program runs on a client, or

f al se by default if it runs in the server. (You cannot specify an auto-commit setting
when you create a JDBC Connect i on instance directly, but you can use the

set Aut oCommi t () method to alter the setting, as described in "Modifying
Auto-Commit in an Existing Connection" on page 4-30.)

Note: Auto-commit functionality is not supported by the JDBC
server-side internal driver.

Key Programming Considerations 4-29

Basic Transaction Control

Modifying Auto-Commit in an Existing Connection

There is typically no reason to change the auto-commit flag setting for an existing
connection, but you can if desired. You can do this by using the set Aut oConmi t ()
method of the underlying JDBC connection object.

You can retrieve the underlying JDBC connection object by using the

get Connecti on() method of any SQLJ connection context instance (whether it is
an instance of the Def aul t Cont ext class or of a connection context class you have
declared).

You can accomplish these two steps at once, as follows. In these examples, ct x is a
SQLJ connection context instance:

ct x. get Gonnecti on() . set AutoCommit (fal se) ;

or:

ct x. get Gonnecti on() . set Aut oConmit (true);

Note: Do not alter the auto-commit setting in the middle of a
transaction.

Using Manual COMMIT and ROLLBACK

If you disable the auto-commit flag, then you must manually commit any changes
to the database.

To commit any changes (such as updates, inserts, or deletes) that have been
executed since the last COMM T operation, use the SQLJ COVM T statement, as
follows:

#sgl { COWT };

To roll back (cancel) any changes that have been executed since the last COMM T
operation, use the SQLJ ROLLBACK statement, as follows:

#sgl { ROLLBAXK };

Do not use the COVM T or ROLLBACK commands when auto-commit is enabled.
This will result in unspecified behavior (or perhaps SQL exceptions).

4-30 SQLJ Developer’s Guide and Reference

Basic Transaction Control

Notes:

« All DDL statements in Oracle SQL include an implicit COWM T
operation. There is no special SQLJ functionality in this regard,;
such statements follow standard Oracle SQL rules.

« If auto-commit mode is off and you close a connection context
instance from a client application, then any changes since your
last COWM T will be rolled back (unless you close the
connection context instance with KEEP_CONNECTI ON, which is
explained in "Closing Shared Connections" on page 7-40).

Effect of Commits and Rollbacks on Iterators and Result Sets

COWM T operations (either automatic or manual) and ROLLBACK operations do not
affect open result sets and iterators. The result sets and iterators will still be open,
and all that is relevant to their content is the state of the database at the time of
execution of the SELECT statements that populated them.

This also applies to UPDATE, | NSERT, and DELETE statements that are executed
after the SELECT statements—execution of these statements does not affect the
contents of open result sets and iterators.

Consider a situation where you SELECT, then UPDATE, then COVM T. A result set or
iterator populated by the SELECT statement will be unaffected by the UPDATE and
COW T.

As a further example, consider a situation where you UPDATE, then SELECT, then
ROLLBACK. A result set or iterator populated by the SELECT will still contain the
updated data, regardless of the subsequent ROLLBACK.

Key Programming Considerations 4-31

Summary: First Steps in SQLJ Code

Summary: First Steps in SQLJ Code

The best way to summarize the SQLJ executable statement features and
functionality discussed to this point is by examining short but complete programs.
This section presents two such examples.

The first example, presented one step at a time and then again in its entirety, uses a
SELECT | NTOstatement to perform a single-row query of two columns from a
table of employees. If you want to run the example, make sure to change the
parameters in the connect . properti es file to settings that will let you connect
to an appropriate database.

The second example, slightly more complicated, will make use of a SQL/J iterator for
a multi-row query.

Import Required Classes
Import any JDBC or SQLJ packages you will need.
You will need at least some of the classes in the j ava. sql package:
inport java.sql.*;
You may not need all the j ava. sql package, however. Key classes there are

j ava. sgl . SQLExcept i on and any classes that you refer to explicitly (for
example, j ava. sqgl . Dat e, j ava. sql . Resul t Set).

You will need the following package for the Or acl e class, which you typically use
to instantiate Def aul t Cont ext objects and establish your default connection:

inport oracle.sqlj.runtinme.*;

If you will be using any SQLJ runtime classes directly in your code, import the
following packages:

inport sqlj.runtine. *;

inport sqlj.runtine.ref.*;

If your code does not use any SQLJ runtime classes directly, however, it will be
sufficient to have them in your CLASSPATH as described in "Set the PATH and
CLASSPATH" on page 2-6.

(Key runtime classes include Asci i St ream Bi nar ySt r eam and
Resul t Set I terator inthesqlj.runti ne package, and Def aul t Cont ext in
thesql j.runtine.ref package.)

4-32 SQLJ Developer’s Guide and Reference

Summary: First Steps in SQLJ Code

Register JDBC Drivers and Set Default Connection

Declare the Si npl eExanpl e class with a constructor that uses the static

Oracl e. connect () method to set the default connection. This also registers the
Oracle JDBC drivers. If you are using a non-Oracle JDBC driver, you must add code
to register it (as mentioned in the code comments below).

This uses a signature of connect () that takes the URL, user name, and password
from the connect . properti es file. An example of this file is in the directory
[Oracl e Hone]/sql j/deno and also in "Set Up the Runtime Connection" on
page 2-9.

public class S npl eExanpl e {

public S npl eExanpl e() throws SQException {
/* If you are using a non-Cracle JDBC driver, add a call here to
DriverManager.regi sterDriver() to register your driver. */
/1 Set default connection (as defined in connect. properties).
Q acl e. connect (get d ass(), "connect. properties");

}

(The mai n() method is defined below.)

Set Up Exception Handling

Create a mai n() that calls the Si npl eExanpl e constructor and then sets up a
try/ cat ch block to handle any SQL exceptions thrown by the r unExanpl e()
method (which performs the real work of this application):

public static void main (String [] args) {

try {
S npl eExanpl e 01 = new S npl eExanpl e() ;
ol. runExanpl e();

}
catch (SQException ex) {

Systemerr.printIn("Eror running the exanple: " + ex);

}

(The runExanpl e() method is defined below.)

Key Programming Considerations 4-33

Summary: First Steps in SQLJ Code

You can also use atry/ cat ch block inside af i nal | y clause when you close the
connection (presuming the f i nal | y clause is not already inside at ry/ cat ch
block):

finally
{

}

try { GQacle.close(); } catch(SQException ex) {...}

Set Up Host Variables, Execute SQLJ Clause, Process Results
Create ar unExanpl e() method that performs the following:
1. Throws any SQL exceptions to the mai n() method for processing.
2. Declares Java host variables.

3. Executes a SQLJ clause that binds the Java host variables into an embedded
SEL ECT statement and selects the data into the host variables.

4. Prints the results.

voi d runExanpl e() throws SQException {
Systemout. println("Runni ng the exanple--");

/] Declare two Java host vari abl es- -
Fl oat sal ary;
String enpnane;

/1 Use SHLECT INTO statenent to execute query and retrieve val ues.
#sgl { SELECT enane, sal INTO:enpnane, :salary FROMenp
WHERE enpno = 7499 };

/1 Print the results--
Systemout.printin("Nane is " + enpnane + ", and Salary is " + salary);

}
} /1 Qosing brace of S npleExanpl e cl ass

This example declares sal ar y and enamne as Java host variables. The SQLJ clause
then selects data from the ENAME and SAL columns of the EMP table and places the
data into the host variables. Finally, the values of sal ary and enpnane are printed
out.

Note that this SELECT statement could select only one row of the EMP table, because
the EMPNOcolumn in the WHERE clause is the primary key of the table.

4-34 SQLJ Developer’s Guide and Reference

Summary: First Steps in SQLJ Code

Example of Single-Row Query using SELECT INTO

This section presents the entire Si npl eExanpl e class from the previous
step-by-step sections. Because this is a single-row query, no iterator is required.

/1 Inport SQJ cl asses:
inport sqlj.runtine. *;

inport sqlj.runtine.ref.*;
inport oracle.sqlj.runtinme.*;

/1 Inport standard java.sqgl package:
inport java.sql.*;

public class S npl eExanpl e {

public S npl eExanpl e() throws SQException {
/* If you are using a non-Cracle JDBC driver, add a call here to
DriverManager.regi sterDriver() to register your driver. */
/1 Set default connection (as defined in connect. properties).
Q acl e. connect (get d ass(), "connect. properties");

}

public static void main (String [] args) throws SQException {

try {
S npl eExanpl e 01 = new S npl eExanpl e() ;
ol. runExanpl e();
}
catch (SQException ex) {
Systemerr.printIn("Eror running the exanple: " + ex);
}
}

finally
{

}

try { Gacle.close(); } catch(SQException ex) {...}

voi d runExanpl e() throws SQException {
Systemout. println("Runni ng the exanple--");
/1 Declare two Java host vari abl es--

Fl oat sal ary;
String enpnane;

Key Programming Considerations 4-35

Summary: First Steps in SQLJ Code

/1 Use SELECT INTO statenent to execute query and retrieve val ues.
#sqgl { SELECT enane, sal |NTO:enpnane, :salary FROMenp
WHERE enpno = 7499 };

/1 Print the results--
Systemout.printin("Nane is " + enpnane + ", and Salary is " + salary);

Set Up a Named lterator

The next example will build on the previous example by adding a named iterator
and using it for a multiple-row query.

First, declare the iterator class. Use object types | nt eger and Fl oat , instead of
primitive typesi nt and f | oat, wherever there is the possibility of null values.

#sqgl iterator EnpRecs(
int enpno, /!l This colum cannot be null, soint is K
/1 (If null is possible, use Integer.)
Sring enane,
Sring job,
I nt eger nur,
Dat e hiredat e,
H oat sal,
H oat comm
int deptno);

Later, when needed, instantiate the EnpRecs class and populate it with query
results.

EnpRecs enpl oyees;

#sgl enpl oyees = { SELECT enpno, enane, job, ngr, hiredate,
sal, conm deptno FROMenp };

Then use the next () method of the iterator to print the results.

vhil e (enpl oyees. next ()) {
Systemout. println("Nane:
Systemout. println("EMPNQ
Systemout. println("Job:
Systemout . println("Mnager:
Systemout.printIn("Date hired: "

enpl oyees. enane());
enpl oyees. enpno());
enpl oyees. job());

enpl oyees. ngr ());

enpl oyees. hiredate());

+ 4+ + + +

4-36 SQLJ Developer’s Guide and Reference

Summary: First Steps in SQLJ Code

Systemout.println("Sal ary: " + enpl oyees. sal ());
Systemout. println("Commssion: " + enpl oyees. comm{));
Systemout. printIn("Departnent: " + enpl oyees. deptno());
Systemout. println();

}

Finally, close the iterator when you are done.

enpl oyees. cl ose();

Example of Multiple-Row Query Using Named Iterator

This example uses a named iterator for a multiple-row query that selects several
columns of data from a table of employees.

Aside from use of the named iterator, this example is conceptually similar to the
previous single-row query example.

/1 Inport SQJ cl asses:
inport sqlj.runtine. *;

inport sqlj.runtine.ref.*;
inport oracle.sqlj.runtinme.*;

/1 Inport standard java.sqgl package:
inport java.sql.*;

/] Declare a SQJ iterator.
/1 Wse object types (Integer, Float) for ngr, sal, And commrather
/1 than primtive types to allowfor possible null selection.

#sqgl iterator EnpRecs(
int enpno, /! This colum cannot be null, soint is K
/1 (If null is possible, Integer is required.)
Sring enane,
Sring job,
I nt eger nur,
Dat e hiredat e,
H oat sal,
H oat comm
int deptno);

/] This is the application class.
public cl ass EmpDenolApp {

Key Programming Considerations 4-37

Summary: First Steps in SQLJ Code

publ i ¢ EnpDenolApp() throws SQException {
/* If you are using a non-Qacle JDBC driver, add a call here to
Dri ver Manager.registerDriver() to register your driver. */
/1 Set default connection (as defined in connect.properties).
Q acl e. connect (get d ass(), "connect. properties");

}

public static void main(Sring[] args) {

try {
EnpCenolApp app = new EnpDenolApp();
app. runExanpl e() ;

}
cat ch(SQ.Exception exception) {

Systemerr.printin("Error running the exanple: " + exception);
}
}

finally
{
try { Gacle.close(); } catch(SQException ex) {...}

}

voi d runExanpl e() throws SQException {
Systemout . println("\ nRunni ng the exanple.\n");

/1 The query creates a new instance of the iterator and stores it in
/1 the variabl e 'enpl oyees’ of type 'EnpRecs’. SQJ translator has
/] automatically declared the iterator so that it has nethods for

/1 accessing the rows and colunms of the result set.

EnpRecs enpl oyees;

#sgl enpl oyees = { SELECT enpno, enane, job, nmgr, hiredate,
sal, coom deptno FRMenp };

/1 Print the result using the iterator.

/1 Note how the next rowis accessed using nethod 'next()’, and how
/1 the colums can be accessed with nethods that are naned after the
/1 actual database col unn nanes.

vhil e (enpl oyees. next ()) {

Systemout. println("Nane: " + enpl oyees. enane());
Systemout. println("EMPNQ " + enpl oyees. enpno());

4-38 SQLJ Developer’s Guide and Reference

Summary: First Steps in SQLJ Code

}
}

Systemout.
Systemout.
Systemout.
Systemout.
Systemout.
Systemout.
Systemout .

}

println(
println(
println(
print|n(
println(
print|n(
printin();

"Job:

" Manager :
"Date hired: "
"Sal ary:
"Comm ssion; "
"Departnent: "

+ 4+ + + + 4+

I'Youmust close the iterator when it's no longer needed.

employees.close() ;

enpl oyees. job());
enpl oyees. nogr ());
enpl oyees. hiredate());
enpl oyees. sal ());

enpl oyees. comn{));
enpl oyees. deptno());

Key Programming Considerations 4-39

Summary: First Steps in SQLJ Code

4-40 SQLJ Developer’s Guide and Reference

D

Type Support

This chapter documents datatypes supported by Oracle SQLJ, listing supported
SQL types and the Java types that correspond to them, including information about
backwards compatibility to Oracle8 and Oracle7. This is followed by details about
support for streams and Oracle type extensions. SQLJ "support” of Java types refers
to types that can be used in host expressions.

For information about Oracle SQLJ support for user-defined types—SQL objects,
object references, and collections—see Chapter 6, "Objects and Collections".

This chapter covers the following topics:
« Supported Types for Host Expressions
« Support for Streams

« Oracle Type Extensions

Type Support 5-1

Supported Types for Host Expressions

Supported Types for Host Expressions

This section summarizes the types supported by Oracle SQLJ, including
information about new support for JDBC 2.0 types, and backwards compatibility for
the 8.0.x and 7.3.x Oracle JDBC drivers.

For a complete list of legal Java mappings for each Oracle SQL type, see the
reference information in the Oracle8i JDBC Developer’s Guide and Reference.

Note: SQLJ (and SQL) perform implicit conversions between SQL
and Java types. Although this is generally useful and helpful, it can
produce unexpected results. Do not rely on type-checking alone to
ensure the correctness of your code.

Supported Types for Oracle8i

Table 5-1 lists the Java types that you can use in host expressions when employing
the Oracle JDBC drivers. This table also documents the correlation between Java
types, SQL types whose typecodes are defined in the class

oracl e.jdbc. driver. Oracl eTypes, and datatypes in the Oracle database.

Note: The Or acl eTypes class simply defines a typecode, which
is an integer constant, for each Oracle datatype. For standard JDBC
types, the Or acl eTypes value is identical to the standard

j ava. sql . Types value.

SQL data output to a Java variable is converted to the corresponding Java type. A
Java variable input to SQL is converted to the corresponding Oracle datatype.

Where objects, object references, and arrays are referred to as "JPub-generated”, this
refers to the Oracle JPublisher utility that can be used in defining Java classes to
correspond to Oracle8i objects, object references, and arrays. The JPublisher utility is
discussed in "JPublisher and the Creation of Custom Java Classes" on page 6-23 and
documented in further detail in the Oracle8i JPublisher User’s Guide.

Table 5-1 Type Mappings for Supported Host Expression Types

Java Type OracleTypes Definition Oracle Datatype

STANDARD JDBC 1.x TYPES
boolean BIT NUMBER

5-2 SQLJ Developer's Guide and Reference

Supported Types for Host Expressions

Table 5-1 Type Mappings for Supported Host Expression Types (Cont.)

Java Type OracleTypes Definition Oracle Datatype
byte TINYINT NUMBER
short SMALLINT NUMBER
int INTEGER NUMBER
long BIGINT NUMBER
float REAL NUMBER
double FLOAT, DOUBLE NUMBER
java.lang.String CHAR CHAR
java.lang.String VARCHAR VARCHAR2
java.lang.String LONGVARCHAR LONG
byte[] BINARY RAW

byte[] VARBINARY RAW

byte[] LONGVARBINARY LONGRAW
java.sgl.Date DATE DATE
java.sql.Time TIME DATE
java.sql.Timestamp TIMESTAMP DATE
java.math.BigDecimal NUMERIC NUMBER
java.math.BigDecimal DECIMAL NUMBER
STANDARD JDBC 2.0 TYPES

java.sql.Blob BLOB BLOB
java.sql.Clob CLOB CLOB
java.sql.Struct STRUCT STRUCT
java.sql.Ref REF REF
java.sql.Array ARRAY ARRAY
custom object classes implementing STRUCT STRUCT
java.sql.SQLData

JAVA WRAPPER CLASSES

java.lang.Boolean BIT NUMBER

Type Support

5-3

Supported Types for Host Expressions

Table 5-1 Type Mappings for Supported Host Expression Types (Cont.)

Java Type

OracleTypes Definition

Oracle Datatype

java.lang.Byte
java.lang.Short
java.lang.Integer
java.lang.Long
java.lang.Float
java.lang.Double

SQLJ STREAM CLASSES
sqlj.runtime.BinaryStream
sqlj.runtime.AsciiStream
sqlj.runtime.UnicodeStream
ORACLE EXTENSIONS
oracle.sql. NUMBER
oracle.sql.CHAR
oracle.sql.RAW
oracle.sql.DATE
oracle.sql.ROWID
oracle.sql.BLOB
oracle.sql.CLOB
oracle.sql.BFILE
oracle.sql.STRUCT
oracle.sql.REF

oracle.sql. ARRAY

custom object classes implementing
oracle.sql.CustomDatum

custom reference classes implementing
oracle.sql.CustomDatum

custom collection classes implementing
oracle.sql.CustomDatum

5-4 SQLJ Developer's Guide and Reference

TINYINT
SMALLINT
INTEGER
BIGINT

REAL

FLOAT, DOUBLE

LONGVARBINARY

LONGVARCHAR
LONGVARCHAR

NUMBER
CHAR
RAW
DATE
ROWID
BLOB
CLOB
BFILE
STRUCT
REF
ARRAY
STRUCT

REF

ARRAY

NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER

LONG RAW
LONG
LONG

NUMBER
CHAR
RAW
DATE
ROWID
BLOB
CLOB
BFILE
STRUCT
REF
ARRAY
STRUCT

REF

ARRAY

Supported Types for Host Expressions

Table 5-1 Type Mappings for Supported Host Expression Types (Cont.)

Java Type OracleTypes Definition Oracle Datatype

any other custom Java classes any any
implementing oracle.sql.CustomDatum
(to wrap any oracle.sql type)

QUERY RESULT OBJECTS

java.sql.ResultSet CURSOR CURSOR

SQLJ iterator objects CURSOR CURSOR

The following points relate to type support for standard SQLJ features:

In releases 8.1.6 and 8.1.7, Oracle SQLJ requires any class that implements
java. sqgl . SQ.Dat atosetthe public static _SQ._NAMEfield
appropriately. This occurs automatically if you use the Oracle JPublisher utility
to generate the class.

Note that this does not follow ISO standard for use of the SQLDat a interface. In
future releases, the Oracle SQLJ implementation will adhere to standard.

See "Requirements for Classes Implementing SQLData" on page 6-12.

JDBC and SQLJ do not support Java char and Char act er types. Instead, use
the Java St r i ng type to represent character data.

Do not confuse the supported j ava. sql . Dat e type with j ava. uti |l . Dat e,
which is not directly supported. The j ava. sql . Dat e class is a wrapper for
java. util . Dat e that allows JDBC to identify the data as a SQL DATE and
adds formatting and parsing operations to support JDBC escape syntax for date
values.

Remember that all numeric types in an Oracle database are stored as NUVBER.
Although you can specify additional precision when you declare a NUVBER
during table creation (you can declare the total number of places and the
number of places to the right of the decimal point), this precision may be lost
when retrieving the data through the Oracle JDBC drivers, depending on the
Java type that you use to receive the data. (An or acl e. sgl . NUMBER instance
would preserve full information.)

The Java wrapper classes (such as | nt eger and FI oat) are useful in cases
where null values may be returned by the SQL statement. Primitive types (such
asi nt and f| oat) cannot contain null values. See "Null-Handling" on

page 4-20 for more information.

Type Support 5-5

Supported Types for Host Expressions

« For information about SQLJ support for result set and iterator host variables,
see "Using Iterators and Result Sets as Host Variables" on page 3-48.

« The SQLJ stream classes are required in using streams as host variables. For
information, see "Support for Streams" on page 5-11.

The following points relate to Oracle extensions, which are covered in "Oracle Type
Extensions" on page 5-25 and in Chapter 6, "Objects and Collections":

« Oracle SQLIJ requires any class that implements or acl e. sql . Cust onDat um
tosetthe public static _SQ._TYPECODE parameter according to values
defined in the Or acl eTypes class. In some cases an additional parameter must
be set as well (such as _SQL_NAME for objects and _SQ._BASETYPE for object
references). This occurs automatically if you use the Oracle JPublisher utility to
generate the class.

See "Oracle Requirements for Classes Implementing CustomDatum" on
page 6-10.

« Theoracl e. sql classes are wrappers for SQL data for each of the Oracle
datatypes. The ARRAY, STRUCT, REF, BLOB, and CL OB classes correspond to
standard JDBC 2.0 interfaces. For background information about these classes
and Oracle extensions, see the Oracle8i JDBC Developer’s Guide and Reference.

« Custom Java classes can map to Oracle objects (implementing Cust onDat umor
SQLDat a), references (implementing Cust orDat umonly), collections
(implementing Cust onDat umonly), or other SQL types (for customized
handling, implementing Cust omDat umonly). See "Custom Java Classes" on
page 6-6.

You can use the Oracle JPublisher utility to automatically generate custom Java
classes. See "JPublisher and the Creation of Custom Java Classes" on page 6-23.

« Using any of the Oracle extensions requires an Oracle JDBC driver, Oracle
customization during translation, and the Oracle SQLJ runtime when your
application runs.

JDBC 2.0 Type Support

As indicated in Table 5-1 above, Oracle JDBC and SQLJ support JDBC 2.0 types in
the standard j ava. sql package.

This section lists JDBC 2.0 supported types and discusses Oracle SQLJ requirements
for use of these types.

5-6 SQLJ Developer's Guide and Reference

Supported Types for Host Expressions

Important: In a Sun Microsystems JDK environment, JDBC 2.0
types require a JDK 1.2.x version. While Oracle JDBC under JDK
1.1.x supports or acl e. j dbc2 extensions to mimic JDBC 2.0 type
functionality, Oracle SQLJ has never supported the or acl e. j dbc2
package.

Types Supported

Table 5-2 lists the JDBC 2.0 types supported by Oracle SQLJ. You can use them
wherever you can use the corresponding Oracle extensions, summarized in the
table.

The Oracle extensions have been available in prior releases and are still available as
well. These or acl e. sql . * classes provide functionality to wrap raw SQL data,
and are described in the Oracle8i JDBC Developer’s Guide and Reference.

Table 5-2 Correlation between Oracle Extensions and JDBC 2.0 Types

JDBC 2.0 Type Oracle Extension

java.sql.Blob oracle.sql.BLOB

java.sql.Clob oracle.sql.CLOB

java.sql.Struct oracle.sql.STRUCT

java.sql.Ref oracle.sql.REF

java.sql.Array oracle.sql. ARRAY
java.sql.SQLData oracle.sql.CustomDatum (where

_SQL_TYPECODE = Or acl eTypes. STRUCT)

For more information about support for the types in Table 5-2, see "Support for
BLOB, CLOB, and BFILE" on page 5-26 and "Support for Weakly Typed Objects,
References, and Collections" on page 6-71.

The following JDBC 2.0 types are currently not supported in Oracle JDBC or SQLJ:
« JAVA OBJECT—Represents an instance of a Java type in a SQL column.

« DI STI NCT—A distinct SQL type represented in or retrievable from a basic SQL
type (for example, SHOESI ZE --> NUMBER).

Type Support 5-7

Supported Types for Host Expressions

Oracle SQLJ Requirements

As with the corresponding Oracle extended types, you can use the standard JDBC
2.0 types in the Oracle SQLJ runtime only if you customize your application with
the Oracle customizer, which happens by default when you run the SQLJ translator.

This support requirement is not in full compliance with the forthcoming 1ISO
standard. However, if you use the standard j ava. sql types in your application,
then the source code will be portable. To use it in an alternative SQLJ runtime
environment, you would have to re-translate it with an appropriate SQLJ translator.

Wrapping PL/SQL BOOLEAN, RECORD, and TABLE Types

Oracle JDBC drivers do not support calling arguments or return values of the
PL/SQL types TABLE (now known as indexed-by tables), RECORD, or BOOLEAN.

As a workaround, you can create wrapper procedures that process the data as types
supported by JDBC. For example, to wrap a stored procedure that uses PL/SQL
booleans, you can create a stored procedure that takes a character or number from
JDBC and passes it to the original procedure as BOOLEAN, or, for an output
parameter, accepts a BOOLEAN argument from the original procedure and passes it
as a CHAR or NUMBER to JDBC. Similarly, to wrap a stored procedure that uses
PL/SQL records, you can create a stored procedure that handles a record in its
individual components (such as CHAR and NUMBER). To wrap a stored procedure
that uses PL/SQL tables, you can break the data into components or perhaps use
Oracle collection types.

Here is an example of a PL/SQL wrapper procedure MY_PRCC for a stored
procedure PROC that takes a BOOLEAN as input:

PROCEDURE MY_PRCC (n NUMBER) 1S
BEG N
IF n=0
THEN proc(fal se);
BLSE proc(true);
BEN\D I F;
END,

PROCEDURE PROC (b BOOLEAN) 1S
BEG N

BEND,

5-8 SQLJ Developer's Guide and Reference

Supported Types for Host Expressions

Backwards Compatibility for Oracle 8.0.x and 7.3.x

Some of the Oracle type extensions supported by the Oracle8i JDBC drivers are
either not supported or supported differently by the Oracle 8.0.x and 7.3.x JDBC
drivers. Following are the key points:

The Oracle 8.0.x and 7.3.x drivers have no or acl e. sql package, meaning
there are no wrapper types such as or acl e. sql . NUMBER and
oracl e. sgl . CHARthat you can use to wrap raw SQL data.

The Oracle 8.0.x and 7.3.x drivers do not support Oracle object and collection
types.

The Oracle 8.0.x and 7.3.x drivers support the Oracle RON D datatype with the
Or acl eRowi d class inthe or acl e. j dbc. dri ver package.

The Oracle 8.0.x drivers support the Oracle BLOB, CLOB, and BFI LE datatypes
with the Or acl eBl ob, Or acl eCl ob, and Or acl eBf i | e classes in the

oracl e. jdbc. dri ver package. These classes do not include LOB and BFILE
manipulation methods such as those discussed in "Support for BLOB, CLOB,
and BFILE" on page 5-26. You must, instead, use the PL/SQL DBMS_LOB
package, which is discussed in the same section.

The Oracle 7.3.x drivers do not support BLOB, CLOB, and BFI LE.

Table 5-3 summarizes these differences.

Table 5-3 Type Support Differences for Oracle 8.0.x and 7.3.x JDBC Drivers

Java Type OracleTypes Definition Oracle Datatype

ORACLE EXTENSIONS

oracle.sql. NUMBER not supported n/a
oracle.sql.CHAR not supported n/a
oracle.sql.RAW not supported n/a
oracle.sql.DATE not supported n/a
oracle.jdbc.driver.OracleRowid ROWID ROWID
oracle.jdbc.driver.OracleBlob BLOB in 8.0.x BLOB in 8.0.x
not supported in 7.3.x n/ain 7.3.x
oracle.jdbc.driver.OracleClob CLOB in 8.0.x CLOB in 8.0.x
not supported in 7.3.x n/ain 7.3.x

Type Support 5-9

Supported Types for Host Expressions

Table 5-3 Type Support Differences for Oracle 8.0.x and 7.3.x JDBC Drivers (Cont.)

Java Type OracleTypes Definition Oracle Datatype
oracle.jdbc.driver.OracleBfile BFILE in 8.0.x BFILE in 8.0.x
not supported in 7.3.x n/ain 7.3.x

oracle.sql.STRUCT not supported n/a
oracle.sql.REF not supported n/a

oracle.sql. ARRAY not supported n/a
JPub-generated objects not supported n/a
JPub-generated object references not supported n/a
JPub-generated arrays not supported n/a
client-customized types not supported n/a

(customization of any oracle.sql
types, including objects,
references, and collections)

5-10 SQLJ Developer’s Guide and Reference

Support for Streams

Support for Streams

Standard SQLJ provides three specialized classes, listed below, for convenient
processing of long data in streams. These stream types can be used for iterator
columns to retrieve data from the database, or for input host variables to send data
to the database. As with Java streams in general, these classes allow the convenience
of processing and transferring large data items in manageable chunks.

« BinaryStream

« AsciiStream

« UnicodeStream

These classes are in the sqgl j . runt i me package.

This section discusses general use of these classes, Oracle SQLJ extended
functionality, and stream class methods.

General Use of SQLJ Streams

With respect to an Oracle8i database, Table 5-1 on page 5-2 lists the datatypes you
would typically process using these stream classes. To summarize: Asci i St ream
and Uni codeSt r eamare typically used for datatype LONG

(j ava. sqgl . Types. LONGVARCHAR), but might also be used for datatype
VARCHAR2 (Types. VARCHAR); Bi nar y St r eamis typically used for datatype LONG
RAW(Types. LONGVARBI NARY), but might also be used for datatype RAW

(Types. Bl NARY or Types. VARBI NARY).

Of course, any use of streams is at your discretion. As Table 5-1 documents, LONG
and VARCHAR?2 data can also be manifested in Java strings, while RAWand LONGRAW
data can also be manifested in Java byte arrays. Furthermore, if your database
supports large object types such as BLOB (binary large object) and CLOB (character
large object), you may find these to be preferable to using types such as LONGand
LONG RAW(although streams may still be used in extracting data from large
objects). Oracle8i supports large object types—see "Support for BLOB, CLOB, and
BFILE" on page 5-26.

All three SQLJ stream classes are subclasses of the standard Java input stream class,
java.io. | nput St reamand act as wrappers to provide the functionality required
by SQLJ. This functionality is to communicate to SQLJ the type and length of data in
the underlying stream so that it can be processed and formatted properly.

You can use the SQLJ stream types for host variables to send data to the database or
iterator columns to receive data from the database.

Type Support 5-11

Support for Streams

Note: In using any method that takes an | nput St r eamobject as
input, you can use an object of any of the SQLJ stream classes
instead.

Using SQLJ Streams to Send Data to the Database

Standard SQLJ allows you to use streams as host variables to update the database.

A key point in sending a SQLJ stream to the database is that you must somehow
determine the length of the data and specify that length to the constructor of the
SQLJ stream. This will be further discussed below.

You can use a SQLJ stream to send data to the database as follows:

1.
2.

5.

Determine the length of your data.

Create a standard Java input stream—an instance ofj ava. i 0. | nput St r eam
or some subclass—as you normally would.

Create an instance of the appropriate SQLJ stream class (depending on the type
of data), passing the input stream and length (as an i nt) to the constructor.

Use the SQLJ stream instance as a host variable in a suitable SQL operation in a
SQLJ executable statement.

Close the stream (this is not required, but is recommended).

This section now goes into more detail regarding two typical examples of sending a
SQLJ stream to the database:

using an operating system file to update a LONG or LONG RAWCcolumn (this can
be either a binary file to update a LONG RAWcolumn, or an ASCII or Unicode
file to update a LONG column)

using a byte array to update a LONG RAWcolumn

Updating LONG or LONG RAW from a File

In updating a database column (presumably a LONGor LONG RAWcolumn) from a
file, a step is needed to determine the length. You can do this by creating a
java. i o. Fi | e object before you create your input stream.

Here are the steps in updating the database from a file:

1.

Create aj ava. i 0. Fi | e object from your file. You can specify the file path
name to the Fi | e class constructor.

5-12 SQLJ Developer’s Guide and Reference

Support for Streams

2. Usethel engt h() method of the Fi | e object to determine the length of the
data. This method returns a | ong value, which you must cast to an i nt for
input to the SQLJ stream class constructor.

Note: Before performing this cast, test the | ong value to make
sure it is not too big to fit into an i nt variable. The static constant
MAX_VALUEin the classj ava. | ang. | nt eger indicates the largest
possible Javai nt value.

3. Createaj ava.i o. Fi | el nput St r eamobject from your Fi | e object. You can
pass the Fi | e object to the Fi | el nput St r eamconstructor.

4. Create an appropriate SQLJ stream object. This would be a Bi narySt r eam
object for a binary file, an Asci i St r eamobject for an ASCII file, or a
Uni codeSt r eamobiject for a Unicode file. Pass the Fi | el nput St r eamobject
and data length (as an i nt) to the SQLJ stream class constructor.

The SQLJ stream constructor signatures are all identical, as follows:

B naryStream (I nput Sreamin, int |ength)
AsciiStream (I nput Sreamin, int |ength)
Uhi codeSream (I nput Sreamin, int |ength)

An instance of j ava. i 0. | nput St r eamor of any subclass, such as
Fi | el nput St r eam can be input to these constructors.

5. Use the SQLJ stream object as a host variable in an appropriate SQL operation
in a SQLJ executable statement.

The following is an example of writing LONG data to the database from a file.
Presume you have an HTML filein/ pri vat e/ nmydi r/ nyfil e. ht M and you
want to insert the file contents into a LONG column called asci i dat a in a database
table named fi | et abl e.

Imports:

inport java.io.*;
inport sqlj.runtine. *;
Executable code:

Filenyfile =newFle ("/private/nydir/nyfile.htm");

int length = (int)nyfile.length(); /1 Mist cast long output to int.
FilelnputSreamfileinstream= new Fi | el nput Srean(nyfile);

Ascii Streamasciistream= new Asci i Srean{fil ei nstream length);

Type Support 5-13

Support for Streams

#sgl { INSERT INTOfiletable (asciidata) VALUES (:asciistrean) };
asci i streamcl ose();

Updating LONG RAW from a Byte Array

You must determine the length of the data before updating the database from a byte
array. (Presumably you would be updating a LONG RAWcolumn.) This is more
trivial for arrays than for files, though, because all Java arrays have functionality to
return the length.

Here are the steps in updating the database from a byte array:

1. Usethel engt h functionality of the array to determine the length of the data.
This returns an i nt , which is what you will need for the constructor of any of
the SQLJ stream classes.

2. Createajava.io. Byt eArrayl nput St r eamobject from your array. You can
pass the byte array to the Byt eAr r ayl nput St r eamconstructor.

3. Create a Bi nar ySt r eamobject. Pass the Byt eArr ayl nput St r eamobject and
data length (as an i nt) to the Bi nar ySt r eamclass constructor.

The constructor signature is as follows:

B narySream (I nput Sreamin, int |ength)

You can use an instance of j ava. i 0. | nput St r eamor of any subclass, such as
the Byt eArr ayl nput St r eamclass.

4. Use the SQLJ stream object as a host variable in an appropriate SQL operation
in a SQLJ executable statement.

The following is an example of writing LONG RAWAdata to the database from a byte
array. Presume you have a byte array byt earray[] and you want to insert its
contents into a LONG RAWcolumn called Bl NDATA in a database table named

Bl NTABLE.

Imports:

inport java.io.*;
inport sqlj.runtine. *;

Executable code:

byte[] bytearray = new byt e[100];

5-14 SQLJ Developer’s Guide and Reference

Support for Streams

(Popul at e bytearray sonehow)

int length = bytearray.|ength;

Byt eArrayl nput St ream arrayst ream = new Byt eArrayl nput St r ear(byt earray) ;
B naryStream bi nstream = new B naryStrean{arraystream |ength);

#sgl { INSERT I NTO bi ntabl e (bi ndata) VALUES (:binstrean) };

bi nstream cl ose();

Note: Itis not necessary to use a stream as in this example—you
can also update the database directly from a byte array.

Retrieving Data into Streams—Precautions

You can also use the SQLJ stream classes to retrieve data from the database, but the
logistics of using streams make certain precautions necessary with some database
products.

When reading long data and writing it to a stream using an Oracle8i database and
Oracle JDBC driver, you must be careful in how you access and process the stream
data.

As the Oracle JDBC drivers access data from an iterator row, they must flush any
stream item from the communications pipe before accessing the next data item.
Even though the stream data is written to a local stream as the iterator row is
processed, this stream data will be lost if you do not read it from the local stream
before the JDBC driver accesses the next data item. This is because of the way
streams must be processed, due to their potentially large size and unknown length.

Therefore, as soon as your Oracle JDBC driver has accessed a stream item and
written it to a local stream variable, you must read and process the local stream
before anything else is accessed from the iterator.

This is especially problematic in using positional iterators, with their requisite
FETCH | NTOsyntax. With each fetch, all columns are read before any are
processed. Therefore, there can be only one stream item, and it must be the last item
accessed.

To summarize the precautions you must take:

« When using a positional iterator, you can have only one stream column, and it
must be the last column. As soon as you have fetched each row of the iterator,
writing the stream item to a local input stream variable in the process, you must

Type Support 5-15

Support for Streams

read and process the local stream variable before advancing to the next row of
the iterator.

= When using a named iterator, you can have multiple stream columns; however,
as you process each iterator row, each time you access a stream field, writing the
data to a local stream variable in the process, you must read and process the
local stream immediately, before reading anything else from the iterator.

Furthermore, in processing each row of a named iterator, you must call the
column accessor methods in the same order in which the database columns
were selected in the query that populated the iterator. As mentioned in a similar
preceding discussion, this is because stream data remains in the
communications pipe after the query. If you try to access columns out of order,
then the stream data may be skipped over and lost in the course of accessing
other columns.

Note: Oracle8i and the Oracle JDBC drivers do not support use of
streams in SELECT | NTOstatements.

Using SQLJ Streams to Retrieve Data from the Database

To retrieve data from a database column as a stream, standard SQLJ allows you to
select data into a named or positional iterator that has a column of the appropriate
SQLJ stream type.

This section covers the basic steps in retrieving data into a SQLJ stream using a
positional iterator or a named iterator, taking into account the precautions
documented in "Retrieving Data into Streams—Precautions" on page 5-15.

These are general steps. For more information, see "Processing SQLJ Streams" on
page 5-18 and "Examples of Retrieving and Processing Stream Data" on page 5-19.

Using a SQLJ Stream Column in a Positional Iterator

Use the following steps to retrieve data into a SQLJ stream using a positional
iterator:

1. Declare a positional iterator class with the last column being of the appropriate
SQLJ stream type.

2. Declare a local variable of your iterator type.

5-16 SQLJ Developer’s Guide and Reference

Support for Streams

Declare a local variable of the appropriate SQLJ stream type. This will be used
as a host variable to receive data from each row of the SQLJ stream column of
the iterator.

Query the database to populate the iterator you declared in step 2.

Process the iterator, as usual (see "Using Positional Iterators" on page 3-44).
Because the host variables in the INTO-list of the FETCH | NTOstatement must
be in the same order as the columns of the positional iterator, the local input
stream variable is the last host variable in the list.

In the iterator processing loop, after each iterator row is accessed, immediately
read and process the local input stream, storing or outputting the stream data as
desired.

Close the local input stream each time through the iterator processing loop (this
is not required, but is recommended).

Close the iterator.

Using SQLJ Stream Columns in a Named Iterator

Use the following steps to retrieve data into one or more SQLJ streams using a
named iterator:

1.

Declare a named iterator class with one or more columns of appropriate SQLJ
stream type.

Declare a local variable of your iterator type.

Declare a local variable of some input stream type for each SQLJ stream column
in the iterator. These will be used to receive data from the stream-column
accessor methods. These local stream variables do not have to be SQLJ stream
types; they can be standard j ava. i 0. | nput St r eamif desired. (They do not
have to be SQLJ stream types, because the data was already correctly formatted
as a result of the iterator columns being of appropriate SQLJ stream types.)

Query the database to populate the iterator you declared in step 2.

Process the iterator, as usual (see "Using Named Iterators" on page 3-40). In
processing each row of the iterator, as each stream-column accessor method
returns the stream data, write it to the corresponding local input stream
variable you declared in step 3.

To ensure that stream data will not be lost, call the column accessor methods in
the same order in which columns were selected in the query in step 4.

Type Support 5-17

Support for Streams

6. Inthe iterator processing loop, immediately after calling the accessor method

for any stream column and writing the data to a local input stream variable,
read and process the local input stream, storing or outputting the stream data as
desired.

7. Close the local input stream each time through the iterator processing loop (this

is not required, but is recommended).

8. Close the iterator.

Note: When you populate a SQLJ stream object with data from an
iterator or the database, the length attribute of the stream will not
be meaningful. This attribute is meaningful only when you set it
explicitly, either using the set Lengt h() method that each SQLJ
stream class provides, or specifying the length to the constructor (as
discussed in "Using SQLJ Streams to Send Data to the Database" on
page 5-12).

Processing SQLJ Streams

In processing a SQLJ stream column in a named or positional iterator, the local
stream variable used to receive the stream data can be either a SQLJ stream type or
the standard j ava. i 0. | nput St r eamtype. In either case, standard input stream
methods are supported.

If the local stream variable is a SQLJ stream type—Bi nar ySt r eam Asci i Stream
or Uni codeSt r eam—you have the option of either reading data directly from the
SQLJ stream object, or retrieving the underlying j ava. i 0. | nput St r eamobject
and reading data from that. This is just a matter of preference—the former approach
is simpler; the latter approach involves more direct and efficient data access.

The following important methods of the | nput St r eamclass—the ski p() method,
cl ose() method, and three forms of the r ead() method—are supported by the
SQLJ stream classes as well.

« int read ()—Reads the next byte of data from the input stream. The byte of
data is returned as an i nt value in the range 0 to 255. If the end of the stream
has already been reached, then the value -1 is returned. This method blocks
until one of the following: 1) input data is available; 2) the end of the stream is
detected; or 3) an exception is thrown.

« int read (byte b[])—Readsuptob.| ength bytes of data from the input
stream, writing the data into the specified b[] byte array. It returns an i nt

5-18 SQLJ Developer’s Guide and Reference

Support for Streams

value indicating how many bytes were read or -1 if the end of the stream has
already been reached. This method blocks until input is available.

« int read (byte b[], int off, int |en)—Readsuptol en (length)
bytes of data from the input stream, starting at the byte specified by the offset,
of f , and writing the data into the specified b[] byte array. It returns an i nt
value indicating how many bytes were read or -1 if the end of the stream has
already been reached. This method blocks until input is available.

« long skip (long n)—Skips over and discards n bytes of data from the
input stream. In some circumstances, however, this method will actually skip a
smaller number of bytes. It returns a | ong value indicating the actual number
of bytes skipped.

« void cl ose()—Closes the stream and releases any associated resources.
In addition, SQLJ stream classes support the following important method:

« | nput Stream get | nput St r eam) —Returns the underlying input stream
being wrapped, asaj ava. i 0. | nput St r eamobject.

Examples of Retrieving and Processing Stream Data

This section provides examples of various scenarios of retrieving stream data from
the database, as follows:

= using a SELECT statement to select data from a LONG column and populate a
SQLJAsci i St reamcolumn in a named iterator

« using a SELECT statement to select data from a LONG RAWcolumn and
populate a SQLJ Bi nar y St r eamcolumn in a positional iterator

Example: Selecting LONG Data into AsciiStream Column of Named lterator This example
selects data from a LONG database column, populating a SQLJ Asci i St ream
column in a named iterator.

Assume there is a table named FI LETABLE with a VARCHAR2 column called
FI LENAME that contains file names, and a LONGcolumn called FI LECONTENTS that
contains file contents in ASCII.

Imports and declarations:

inport sqlj.runtine. *;
inport java.io.*;

#sgl iterator M/Nanedlter (String fil ename, AsciiStreamfil econtents);

Type Support 5-19

Support for Streams

Executable code:

M/Nanedlt er namediter = null;
Sring fnang;
Asci i Stream ascstream
#sgl nanediter = { SELECT filenane, filecontents FROMfiletabl e };
vhile (nanediter.next()) {
fnane = nanediter.filenane();
ascstream= nanediter.fil econtents();
Systemout. println("Gntents for file " + fnane + ":");
print Streanfascstrean);
ascstreamcl ose();

}

nanedi ter. cl ose();

public void printStrean{l nputSreamin) throws | Exception

{
int asciichar;
vwhile ((asciichar = in.read()) '=-1) {
Systemout. print ((char)asciichar);
}
}

Remember that you can pass a SQLJ stream to any method that takes a standard
java.io. | nput St reamas an input parameter.

Example: Selecting LONG RAW Data into BinaryStream Column of Positional Iterator This
example selects data from a LONG RAWdatabase column, populating a SQLJ
Bi nar y St r eamcolumn in a positional iterator.

As explained in "Retrieving Data into Streams—Precautions" on page 5-15, there can
be only one stream column in a positional iterator, and it must be the last column.

Assume there is a table named Bl NTABLE with a NUMBER column called
| DENTI FI ERand a LONG RAWcolumn called Bl NDATA that contains binary data
associated with the identifier.

Imports and declarations:

inport sqlj.runtine. *;
#sgl iterator M/Poslter (int, BinaryStrean);

Executable code:

5-20 SQLJ Developer’s Guide and Reference

Support for Streams

M/Posl ter positer = null;
int id=0;
Bi narySt ream bi nst rean¥nul | ;
#sgl positer = { SHLECT identifier, bindata FROMbintabl e };
vhile (true) {
#sgl { FETCH :positer INTO:id, :binstream};
if (positer.endFetch()) break;

(...process data as desired...)

bi nstream cl ose();

}

positer.close();

SQLJ Stream Objects as Output Parameters and Function Return Values

As described in the preceding sections, standard SQLJ supports use of the
Bi naryStream Asci i Stream and Uni codeSt r eamclasses in the package
sql j . runti nme for retrieval of stream data into iterator columns.

In addition, the Oracle SQLJ implementation allows the following uses of SQLJ
stream types if you are using an Oracle database, Oracle JDBC driver, Oracle
customizer, and Oracle SQLJ runtime:

« They can appear as OUT or | NOUT host variables from a stored procedure or
function call.

=« They can appear as the return value from a stored function call.

Streams as Stored Procedure Output Parameters

You can use the types Asci i St r eam Bi nar ySt r eam and Uni codeSt r eamas the
assignment type for a stored procedure or stored function OQUT or | NOUT parameter.

Assume the following table definition:

CREATE TABLE st reanexanpl e (nane VARCHAR? (256), data LONG;

I NSERT | NTO st r earexanpl e (data, nane)
VALUES
(’ 0000000000111111111112222222222333333333344444444445555555555" ,
'S reankxanpl €');

Also presume the following stored procedure definition, which uses the
STREAMEXANMPLE table:

Type Support 5-21

Support for Streams

CREATE (R REPLACE PROCEDURE out _| ongdat a
(dat anane VARCHAR?, longdata QUT LONG IS
BEQ N
SH ECT data I NTO | ongdat a FROM st r eamexanpl e WHERE nane = dat anane;
BEND out _| ongdat a;

The following sample code uses a call to the out _| ongdat a stored procedure to
read the long data.

Imports:

inport sqlj.runtine. *;

Executable code:

Ascii Streamdat a;

#sgl { CALL out | ongdata(’ Streanitxanpl e, : QJT data) };

int c;

vwhile ((c = data.read ()) '=-1)
Systemout . print((char)c);

Systemout . flush();

dat a. cl ose();

Note: Closing the stream is recommended, but not required.

Streams as Stored Function Results

You can use the types Asci i St r eam Bi nar ySt r eamand Uni codeSt r eamas the
assignment type for a stored function return result.

Assume the same STREAMEXAMPLE table definition as in the preceding stored
procedure example.

Also assume the following stored function definition, which uses the
STREAMEXANMPLE table:

CREATE CR REPLACE FUNCTI CN get _| ongdat a (dat anane VARCHAR?) RETURN | ong
IS | ongdata LONG

BEQ N
SH ECT data I NTO | ongdat a FROM st r eamexanpl e WHERE nane = dat anane;
RETURN | ongdat a;

END get _| ongdat a;

5-22 SQLJ Developer’s Guide and Reference

Support for Streams

The following sample code uses a call to the get _| ongdat a stored function to read
the long data.

Imports:

inport sqlj.runtine. *;

Executable code:

Ascii Streamdat a;
#sgl data = { VALUES(get | ongdata(’ S reantExanpl €')) };
int c;
vwhile ((c = data.read ()) '=-1)
Systemout. print((char)c);
Systemout . flush();
dat a. cl ose();

Note: Closing the stream is recommended, but not required.

Stream Class Methods

The SQLJ stream classes in the sqgl j . runt i me package—Bi nar ySt r eam
Asci i St reamand Uni codeSt r eam—are all subclasses of the
sqlj.runtine. Stream/ apper class.

The St r eamW apper class provides the following methods inherited by the SQLJ
stream classes:

« | nputStream get | nput St ream) —As discussed in "Processing SQLJ
Streams" on page 5-18, you can optionally use this method to get the underlying
java.i o. | nput St r eamobject of any SQLJ stream object. This is not required,
however, as you can also process SQLJ stream objects directly.

« void setlLength(int |ength)—Youcan use thistosetthel ength
attribute of a SQLJ stream object. This is not necessary if you have already set
| engt h in constructing the stream object, unless you want to change it for
some reason.

Bear in mind that the | engt h attribute must be set to an appropriate value
before you send a SQLJ stream to the database.

« int getLengt h()—This method returns the value of the | engt h attribute of
a SQLJ stream. This value is meaningful only if you explicitly set it using the

Type Support 5-23

Support for Streams

stream object constructor or the set Lengt h() method. When you retrieve data
into a stream, the | engt h attribute is not set automatically.

Note: Thesqlj.runtime. Stream/ apper classis asubclass of
thej ava.io. Filterlnput Streamclass, which is a subclass of
thej ava.i o. | nput St r eamclass.

5-24 SQLJ Developer’s Guide and Reference

Oracle Type Extensions

Oracle Type Extensions

Oracle SQLJ offers extended functionality for the following JDBC 2.0 and
Oracle-specific datatypes:

«» JDBC 2.0 LOB datatypes (BLOB and CLOB)

« Oracle BFI LE datatype

« Oracle ROW Ddatatype

« Oracle REF CURSOR datatypes

« other Oracle8i datatypes (such as NUMBER and RAW

These datatypes are supported by classes in the or acl e. sql package, discussed
below. LOBs and BFILEs are handled similarly in many ways, so are discussed
together.

Additionally, Oracle SQLJ offers extended support for the following standard JDBC
type:
« BigDecinal

JDBC 2.0 functionality for user-defined database objects (both weakly and strongly
typed), object references, and collections (variable arrays and nested tables) are also
supported. These are discussed in Chapter 6, "Objects and Collections".

Note that using Oracle extensions in your code requires the following:
« Use one of the Oracle JDBC drivers.

« Customize the profiles appropriately (the default customizer,
oracle.sqglj.runtine.util.OraCustom zer, is recommended).

« Use the Oracle SQLJ runtime when your application runs.

(The Oracle SQLJ runtime and an Oracle JDBC driver are required whenever you
use the Oracle customizer, even if you do not actually use Oracle extensions in your
code.)

You also must import the or acl e. sql package, as follows (unless you use the
fully qualified class names in your code):

inport oracle.sql.*;

For Oracle-specific semantics-checking, you must use an appropriate checker. The
default checker, or acl e. sql j . checker. Oracl eChecker, acts as a front end

Type Support 5-25

Oracle Type Extensions

and will run the appropriate checker based on your environment. This will be one
of the Oracle-specific checkers if you are using an Oracle JDBC driver.

Package oracle.sql

SQLJ users, as well as JDBC users, should be aware of the or acl e. sql package,
which includes classes to support all the Oracle8i datatypes (for example,

oracl e. sql . RON D, or acl e. sql . CLOB, and or acl e. sql . NUMBER). The
oracl e. sqgl classes are wrappers for the raw SQL data and provide appropriate
mappings and conversion methods to Java formats. An or acl e. sqgl . * object
contains a binary representation of the corresponding SQL data in the form of a byte
array.

Eachoracl e. sqgl . * datatype class is a subclass of the or acl e. sql . Dat umclass.

You also must import the package, as follows (unless you use the fully qualified
class names in your code):

inport oracle.sql.*;
For Oracle-specific semantics-checking, you must use an appropriate checker. The
default checker, or acl e. sql j . checker. Oracl eChecker, acts as a front end

and will run the appropriate checker based on your environment. This will be one
of the Oracle-specific checkers if you are using an Oracle JDBC driver.

For information about translator options relating to semantics-checking, see
"Connection Options" on page 8-30 and "Semantics-Checking Options" on
page 8-57.

For more information about the or acl e. sqgl classes, see the Oracle8i JDBC
Developer’s Guide and Reference.

Support for BLOB, CLOB, and BFILE

Oracle JDBC and SQLJ support JDBC 2.0 large object (LOB) datatypes—BLOB
(binary LOB) and CLOB (character LOB)—and provide similar support for the
Oracle-specific BFI LE type (read-only binary files stored outside the database).
These datatypes are supported by the following classes:

« oracle.sqgl.BLOB
« oracle.sql.CLOB
« oracle.sqgl.BFILE

5-26 SQLJ Developer’s Guide and Reference

Oracle Type Extensions

See the Oracle8i JDBC Developer’s Guide and Reference for more information about
LOBs and files, and use of supported stream APIs.

Theoracl e. sgl . BLOB, or acl e. sgl . CLOB, and or acl e. sqgl . BFI LE classes
can be used in Oracle-specific SQLJ applications in the following ways:

= as| N, QUT, or | NOUT host variables in executable SQLJ statements (including
use in INTO-lists)

« asreturn values from stored function calls
« ascolumn types in iterator declarations (both named and positional)

You can manipulate LOBs by using methods defined in the BLOB and CLOB classes
(recommended) or by using the procedures and functions defined in the PL/SQL
package DBMS_LOB. All procedures and functions defined in this package can be
called by SQLJ programs.

You can manipulate BFILEs by using methods defined in the BFI LE class
(recommended) or by using the file-handling routines of the DBMS_L OB package.

Using methods of the BLOB, CLOB, and BFI LE classes in a Java application is more
convenient than using the DBMS_ L OB package and may also lead to faster execution
in some cases.

Note that the type of the chunk being read or written depends on the kind of LOB
being manipulated. For example, CLOBs contain character data; therefore, Java
strings are used to hold chunks of data. BLOBs contain binary data; therefore, Java
byte arrays are used to hold chunks of data.

Note: DBMS_LOBis a database package, requiring a round trip to
the server.

Methods in the BLOB, CLOB, and BFI LE classes may also result in a
round trip to the server.

BFILE Class versus DBMS_LOB Functionality for BFILES

The following examples contrast use of the or acl e. sql methods with use of the
DBMS_L OB package for BFILEs.

Example: Use of oracle.sql.BFILE File-Handling Methods with BFILE This example
manipulates a BFILE using file-handling methods of the or acl e. sqgl . BFI LE class.

BFl LE openFile (BFILE file) throws SQException
{

Type Support 5-27

Oracle Type Extensions

String dirAias, nang;
dirAlias = file.getDrAias();

nane = file.get Nane();

Systemout.printin("nanme: " + dirAias + "/" + nane);

if (!file.isFileQen())
{

}

return fil e
}

file. openFile();

The BFI LEget Di r Al i as() and get Name() methods construct the full path and
file name. The openFi | e() method opens the file. You cannot manipulate BFILEs
until they have been opened.

Example: Use of DBMS_LOB File-Handling Routines with BFILE This example manipulates
a BFILE using file-handling routines of the DBMS_L OB package.

BFl LE openFi | e(BFI LE file) throws SQException

{
Sring dirAias, nang;
#sgl { CALL dbns_lob.filegetname(:file, :out dirAias, :out nane) };
Systemout.printin("nane: " + dirAias +"/" + nane);
bool ean i sCpen;
#sqgl isQpen = { VALUES(dbns_| ob.fileisopen(:file)) };
if (!isQpen)
{
#sgl { CALL dbns_lob.fileopen(:inout file) };
}
return file;
}

The openFi | e() method prints the name of a file object then returns an opened
version of the file. Note that BFILEs can be manipulated only after being opened
with a call to DBMS_LOB. FI LEOPEN or equivalent method in the BFI LE class.

BLOB and CLOB Classes versus DBMS_LOB Functionality for LOBs

The following examples contrast use of the or acl e. sgql methods with use of the
DBMS_L OB package for BLOBs and CLOBs. For each example using or acl e. sq|l
methods, the example that follows it is functionally identical but uses DBMS_LOB
instead.

5-28 SQLJ Developer’s Guide and Reference

Oracle Type Extensions

Example: Use of oracle.sql.CLOB Read Methods with CLOB This example reads data from
a CLOB using methods of the or acl e. sql . CLOB class.

voi d readFromd ob(LGB cl ob) throws SQException
{

I ong cl obLen, readLen;
String chunk;

clobLen = clob.length();

for (longi =0; i < clobLen; i+=readLen) {
chunk = clob.getSubSring(i, 10);
readLen = chunk. |l ength();
Systemout. printin("read " + readLen + " chars: " + chunk);

}
}

This method contains a loop that reads from the CLOB and returns a 10-character
Java string each time. The loop continues until the entire CLOB has been read.

Example: Use of DBMS_LOB Read Routines with CLOB This example uses routines of the
DBMS_L OB package to read from a CLOB.

voi d readFromd ob(LGB cl ob) throws SQException

{
I ong cl obLen, readLen;
Sring chunk;
#sqgl clobLen = { VALLES(dbns_| ob. getl ength(: clob)) };
for (longi =1; i <= clobLen; i +=readLen) {
readLen = 10;
#sql { CALL dbns_| ob.read(:clob, :inout readLen, :i, :out chunk) };
Systemout. printin("read " + readLen + " chars: " + chunk);
}
}

This method reads the contents of a CLOB in chunks of 10 characters at a time. Note
that the chunk host variable is of the type St ri ng.

Example: Use of oracle.sql.BLOB Write Routines with BLOB This example writes data to a
BLOB using methods of the or acl e. sqgl . BLOB class. Input a BLOB and specified
length.

voi d writeToB ob(BLOB bl ob, |ong bl obLen) throws SQException

Type Support 5-29

Oracle Type Extensions

byte[] chunk ={ 0, 1, 2, 3, 4, 5 6, 7, 8 91};
I ong chunkLen = (I ong)chunk. | ength;

for (longi =0; i < blobLen; i+= chunkLen) {
if (blobLen < chunkLen) chunkLen = bl obLen;
chunk][0] (byte) (i+1);
chunkLen = bl ob. put Bytes(i, chunk);

}
}

This method goes through a loop that writes to the BLOB in 10-byte chunks until
the specified BLOB length has been reached.

Example: Use of DBMS_LOB Write Routines with BLOB This example uses routines of the
DBMS_L OB package to write to a BLOB.

voi d writeToB ob(BLOB bl ob, | ong bl obLen) throws SQException

{
byte[] chunk ={ 0, 1, 2, 3, 4, 5 6, 7, 8 91};
I ong chunkLen = (I ong) chunk. | engt h;

for (longi =1; i <= blobLen; i += chunkLen) {
if ((blobLen - i + 1) < chunkLen) chunkLen = bl obLen - i + 1;
chunk[0] = (byte)i;
#sgl { CALL dbns_l ob.write(: I NQUT bl ob, :chunkLen, :i, :chunk) };
}
}

This method fills the contents of a BLOB in 10-byte chunks. Note that the chunk
host variable is of the type byt e[] .

LOB and BFILE Stored Function Results

Host variables of type BLOB, CLOB, and BFI LE can be assigned to the result of a
stored function call. The following example is for a CLOB, but code for BLOBs and
BFILEs would be functionally the same.

First, presume the following function definition:

CREATE CR REPLACE function | onger_clob (cl1 clob, ¢2 clob) return clob is
result cl ob;

BEA N
if dbns_| ob. get Length(c2) > dbns_| ob. get Lengt h(cl) then
result = c2;
el se

5-30 SQLJ Developer’s Guide and Reference

Oracle Type Extensions

result = cl;
end if;
RETUN resul t;
END | onger _cl ob;

The following example uses a CLOB as the assignment type for a return value from
the function defined above.

voi d readFromongest (OL(B c1, OB c2) throws SQException

{
Q.8 | ongest ;
#sqgl longest = { VALLES(| onger_clob(:cl, :c2)) };
r eadFr ond ob(| ongest) ;

}

The r eadFr omLongest () method prints the contents of the longer passed CLOB,
using the r eadFr onTCl ob() method defined previously.

LOB and BFILE Host Variables and SELECT INTO Targets

Host variables of type BLOB, CLOB, and BFI LE can appear in the INTO-list of a
SELECT | NTOexecutable statement. The following example is for a BLOB and
CLOB, but code for BFILEs would be functionally the same.

Assume the following table definition:

CREATE TABLE basi c_| ob_t abl e(x varchar2(30), b blob, c clob);
I NSERT INTO basic_|ob_table
VALUES(’ one’, ' 010101010101010101010101010101', ’onetwot hreefour’);
I NSERT INTO basic_|ob_table
VALUES(' two', ' 020202020202020202020202020202' , ' twot hreef ourfivesi X');

The following example uses a BLOB and a CLOB as host variables that receive data
from the table defined above, using a SELECT | NTO statement.

BLCB bl ob;
A.AB cl ob;
#sgl { SELECT one. b, two.c INTO:blob, :clob
FROM basic | ob table one, basic Iob table two
WHERE one. x=" one’ AND two. x="two’ };
#sgl { INSERT INTO basic_|ob_table VALUES('three’, :blob, :clob) };

Type Support 5-31

Oracle Type Extensions

This example selects the BLOB from the first row and the CLOB from the second
row of the BASI C_LOB_TABLE. It then inserts a third row into the table using the
BLOB and CLOB selected in the previous operation.

LOBs and BFILEs in Iterator Declarations

The types BLOB, CLOB, and BFI LE can be used as column types for SQLJ positional
and named iterators. Such iterators can be populated as a result of compatible
executable SQLJ operations.

Here are sample declarations that will be repeated and used below.

#sqgl iterator NanedL(Blter(COL.CB c);
#sqgl iterator PositionedL(Bl ter(BLCB);
#sqgl iterator NanedFl LEter(BF LE bf);

LOB and BFILE Host Variables and Named lterator Results

The following example employs the table BASI C_LOB_TABLE and the method
readFr omLongest () defined in previous examples, and uses a CLOB in a hamed
iterator. Similar code could be written for BLOBs and BFILEs.

Declaration:
#sqgl iterator NanedL(Blter (OB c);

Executable code:

NamedL(Bl ter iter;
#sgl iter = { SEHLECT ¢ FROMbasic_lob _table };
if (iter.next())
aABcl =iter.c();
if (iter.next())
aABc2 =iter.c();
iter.close();
readFr onLongest (c1, c2);

This example uses an iterator to select two CLOBs from the first two rows of the
BASI C_LOB_TABLE, then prints the larger of the two using the
readFr onLongest () method.

5-32 SQLJ Developer’s Guide and Reference

Oracle Type Extensions

LOB and BFILE Host Variables and Positional Iterator FETCH INTO Targets

Host variables of type BLOB, CLOB, and BFI LE can be used with positional iterators
and appear in the INTO-list of the associated FETCH | NTOstatement if the
corresponding column attribute in the iterator is of the identical type.

The following example employs table BASI C_LOB_TABLE and method
wri t eToBl ob() defined in previous examples. Similar code could be written for
CLOBs and BFILEs.

Declaration:
#sqgl iterator PositionedL(Blter(BLCB);

Executable code:

Positi onedL(Blter iter;

BLAB blob = nul | ;

#sgl iter = { SHLECT b FROMbasic_lob _table };
for (long ronNum= 1; ; rowNum+)

{
#sql { FETCH :iter INTO:blob };
if (iter.endFetch()) break;
witeToB ob(bl ob, 512*rowNun);

}

iter.close();

This example callswri t eToBl ob() for each BLOB in BASI C_LOB_TABLE. Each
row writes an additional 512 bytes of data.

Support for Oracle ROWID

The Oracle-specific type ROW D stores the unique address for each row in a
database table. The class or acl e. sql . RON Dwraps ROWID information and is
used to bind and define variables of type ROW D.

Variables of type or acl e. sgl . RON D can be employed in SQLJ applications
connecting to an Oracle database in the following ways:

« as| N, OUT or | NOUT host variables in SQLJ executable statements (including
use in INTO-lists)

= asareturn value from a stored function call

« ascolumn types in iterator declarations (both named and positional)

Type Support 5-33

Oracle Type Extensions

Note: Oracle does not currently support positioned UPDATE or
positioned DELETE by way of a WHERE CURRENT OF clause, as
specified by the SQLJ specification. Instead, Oracle recommends the
use of ROWIDs to simulate this functionality.

ROWIDs in Iterator Declarations

You can use the type or acl e. sql . RON Das a column type for SQLJ positional
and named iterators, as shown in the following declarations:

#sgl iterator NanedRowi dliter (String ename, ROND rowid);

#sgl iterator PositionedRowiditer (Sring, ROND;

ROWID Host Variables and Named-Iterator SELECT Results

You can employ ROW Dobjects as | N, OUT and | NOUT parameters in SQLJ
executable statements. In addition, you can populate iterators whose columns
include ROW Dtypes. This code example uses the preceding example declarations.

Declaration:
#sgl iterator NanedRowi dliter (String ename, ROND rowid);

Executable code:

NarmedRowi diter iter;

ROND rowi d;

#sgl iter = { SHEHLECT enane, rowid FROMenp };
vhile (iter.next())

{
if (iter.enane().equal s(" TURNER'))
{
ronid =iter.rowd();
#sgl { UPDATE enp SET sal = sal + 500 WERE rowid = :rowid };
}
iter.close();

The preceding example increases the salary of the employee named Turner by $500
according to the ROWID. Note that this is the recommended way to encode WHERE
CURRENT OF semantics.

5-34 SQLJ Developer’s Guide and Reference

Oracle Type Extensions

ROWID Stored Function Results

Presume the following function exists in the database.

CREATE (R REPLACE function get_rowid (nane varchar2) return rowd is
rid rowd;

BEA N
SHECT rowid INTOrid FROMenp WERE enane = nang;
RETUN ri d;

END get _rowi d;

Given the preceding stored function, the following example indicates how a RON D
object is used as the assignment type for the function return result.

ROND rowi d;
#sgl rowid = { val ues(get_row d(’ TURNER)) };
#sql { UPDATE enp SET sal = sal + 500 WERE rowid = :rowid };

This example increases the salary of the employee named Turner by $500 according
to the ROWID.

ROWID SELECT INTO Targets

Host variables of type ROW Dcan appear in the INTO-list of a SELECT | NTO
statement.

ROND rowi d;
#sgl { SELECT rowid INTO :row d FROM enp WHERE enane=" TURNER };
#sql { UPDATE enp SET sal = sal + 500 WERE rowid = :rowid };

This example increases the salary of the employee named Turner by $500 according
to the ROWID.

ROWID Host Variables and Positional Iterator FETCH INTO Targets

Host variables of type ROW D can appear in the INTO-list of a FETCH | NTO
statement if the corresponding column attribute in the iterator is of the identical

type.
Declaration:
#sgl iterator PositionedRowiditer (Sring, ROND);

Executable code:

Positi onedFRowi dlter iter;

Type Support 5-35

Oracle Type Extensions

ROND rowid = nul | ;
Sring enane = nul | ;
#sqgl iter = { SHLECT enane, rowid FROMenp };
while (true)
{
#sgl { FETCH :iter INTO:enane, :rowd };
if (iter.endFetch()) break;
if (enane.equal s("TURNER'))

{
#sgl { UPDATE enp SET sal = sal + 500 WERE rowid = :rowid };
}
iter.close();

This example is similar to the previous named iterator example, but uses a
positional iterator with its customary FETCH | NTOsyntax.

Support for Oracle REF CURSOR Types

Oracle PL/SQL and Oracle SQLJ support the use of cursor variables that represent
database cursors.

Overview of REF CURSOR Types

Cursor variables are functionally equivalent to JDBC result sets, essentially
encapsulating the results of a query. A cursor variable is often referred to as a REF
CURSOR, but REF CURSOR itself is a type specifier, not a type name. Instead, named
REF CURSOR types must be specified. The following example shows a REF
CURSOR type specification:

TYPE EnpQur Type | S REF AURCR

Stored procedures and stored functions can return parameters of Oracle REF
CURSOR types. You must use PL/SQL to return a REF CURSOR parameter; you
cannot accomplish this using SQL alone. A PL/SQL stored procedure or function
can declare a variable of some named REF CURSOR type, execute a SELECT
statement, and return the results in the REF CURSOR variable.

For more information about cursor variables, see the PL/SQL User’s Guide and
Reference.

5-36 SQLJ Developer’s Guide and Reference

Oracle Type Extensions

REF CURSOR Types in SQLJ

In Oracle SQLJ, a REF CURSOR type can be mapped to iterator columns or host
variables of any iterator class type or of type j ava. sql . Resul t Set, but host
variables can be OUT only. Support for REF CURSOR types can be summarized as
follows:

= as result expressions for stored function returns

» asoutput host expressions for stored procedure or function output parameters
« asoutput host expressions in INTO-lists

« asiterator columns

You can use the Oracle SQL CURSOR operator for a nested SELECT within an outer
SELECT statement. This is how you can write a REF CURSORto an iterator column
or Resul t Set column in an iterator, or write a REF CURSOR to an iterator host
variable or Resul t Set host variable in an INTO-list.

"Using Iterators and Result Sets as Host Variables" on page 3-48 has examples
showing the use of implicit REF CURSOR variables, including an example of the
CURSCR operator.

Notes:
« Use the typecode Or acl eTypes. CURSOR for REF CURSOR
types.

« Thereisnooracl e. sql class for REF CURSORtypes. Use
either j ava. sqgl . Resul t Set or an iterator class. (Close the
result set or iterator to release database resources when you are
done processing it.)

REF CURSOR Example

The following sample method shows a REF CURSOR type being retrieved from an
anonymous block. This is part of a full sample application that is in "REF
CURSOR—RefCursDemo.sqlj" on page 12-53.

private static Enplter refQurslnAnonBl ock(String nane, int no)
throws java. sql . SQLExcepti on {

Enplter enps = nul | ;

Systemout . print|n("UWsing anonymous bl ock for ref cursor..");
#sqgl { begin

Type Support 5-37

Oracle Type Extensions

I NSERT | NTO enp (enane, enpno) VALUES (:nane, :no);
CPEN :out enps FCR SHLECT enane, enpno FROMenp CRDER BY enpno;
end
b
return enps;

}

Support for Other Oracle8i Datatypes

All or acl e. sql classes can be used for iterator columns or for input, output, or
input-output host variables in the same way that any standard Java type can be
used. This includes the classes mentioned in the preceding sections and others, such
asthe oracl e. sql . NUMBER, or acl e. sgl . CHAR and or acl e. sql . RAWclasses.

Because the or acl e. sqgl . * classes do not require conversion to Java type format,
they offer greater efficiency and precision than equivalent Java types. You would
need to convert the data to standard Java types, however, to use it with standard
Java programs or to display it to end users.

Extended Support for BigDecimal

SQLJ supportsj ava. mat h. Bi gDeci mal in the following situations:
« as host variables in SQLJ executable statements

« as return values from stored function calls

« asiterator column types

Standard SQLJ has the limitation that a value can be retrieved as Bi gDeci mal only
if that is the JDBC default mapping, which is the case only for numeric and decimal
data. (See Table 5-1 on page 5-2 for more information about JDBC default
mappings.)

In Oracle SQLJ, however, you can map to non-default types as long as the datatype
is convertible from numeric and you use Oracle8i, an Oracle JDBC driver, the Oracle
customizer, and the Oracle SQLJ runtime. The datatypes CHAR, VARCHARZ2, LONG,
and NUMBER are convertible. For example, you can retrieve data from a CHAR
column into a Bi gDeci mal variable. To avoid errors, however, you must be careful
that the character data consists only of numbers.

Note: To use Bi gDeci mal , importj ava. mat h or specify
Bi gDeci mal by its fully qualified name.

5-38 SQLJ Developer’s Guide and Reference

Oracle Type Extensions

Type Support 5-39

Oracle Type Extensions

5-40 SQLJ Developer’s Guide and Reference

S

Objects and Collections

This chapter discusses how Oracle SQLJ supports user-defined SQL types—namely
objects (and related object references) and collections (variable arrays and nested
tables). This includes discussion of the Oracle JPublisher utility, which you can use
to generate Java classes corresponding to user-defined SQL types.

The following topics are discussed:

Introduction

Oracle Objects and Collections

Custom Java Classes

User-Defined Types in the Database

JPublisher and the Creation of Custom Java Classes

Strongly Typed Objects and References in SQLJ Executable Statements
Strongly Typed Collections in SQLJ Executable Statements

Serializing Java Objects

Weakly Typed Obijects, References, and Collections

Objects and Collections 6-1

Introduction

Introduction

Oracle8i and Oracle SQLJ support user-defined SQL object types (composite data
structures), related SQL object reference types, and user-defined SQL collection types.
Oracle objects and collections are composite data structures consisting of individual
data elements.

Oracle SQLJ supports either strongly typed or weakly typed Java representations of
object types, reference types, and collection types to use in iterators or host
expressions. Strongly typed representations use a custom Java class that maps to a
particular object type, reference type, or collection type and must implement either
the JDBC 2.0 standard j ava. sql . SQLDat a interface or the Oracle

or acl e. sqgl . Cust onDat uminterface. Either paradigm is supported by the Oracle
JPublisher utility, which you can use to automatically generate custom Java classes.
Weakly typed representations use the class or acl e. sql . STRUCT (for objects),

or acl e. sqgl . REF (for references), or or acl e. sql . ARRAY (for collections). (Or,
alternatively, you can use standard j ava. sql . Struct, Ref , or Arr ay objects in a
weakly typed scenario.)

Note that using Oracle extensions in your code requires the following:
« Use one of the Oracle JDBC drivers.

« Customize the profiles appropriately (the default customizer,
oracle.sqglj.runtine.util.OraCustom zer, is recommended).

« Use the Oracle SQLJ runtime when your application runs.

(The Oracle SQLJ runtime and an Oracle JDBC driver are required whenever you
use the Oracle customizer, even if you do not actually use Oracle extensions in your
code.)

You also must import the or acl e. sql package, as follows (unless you use the
fully qualified class names in your code):

inport oracle.sql.*;

For Oracle-specific semantics-checking, you must use an appropriate checker. The
default checker, or acl e. sql j . checker. Oracl eChecker, acts as a front end
and will run the appropriate checker based on your environment. This will be one
of the Oracle-specific checkers if you are using an Oracle JDBC driver.

For information about translator options relating to semantics-checking, see
"Connection Options" on page 8-30 and "Semantics-Checking Options" on
page 8-57.

6-2 SQLJ Developer's Guide and Reference

Introduction

Notes:

This chapter primarily discusses the use of custom Java classes
with user-defined types; however, classes implementing

Cust onDat umcan be used for other Oracle SQL types as well.
A class implementing Cust onDat umcan be employed to
perform any kind of desired processing or conversion in the
course of transferring data between the database and Java.

Custom Java classes for objects, references, and collections are
referred to as custom object classes, custom reference classes, and
custom collection classes, respectively.

The SQLDat a interface is intended only for custom object
classes. The Cust onDat uminterface can be used for any
custom Java class.

User-defined SQL object types and user-defined SQL collection
types are referred to as user-defined types (UDTS).

For general information about Oracle object features and
functionality, see the Oracle8i Application Developer’s Guide -
Object-Relational Features.

Objects and Collections 6-3

Oracle Objects and Collections

Oracle Objects and Collections

This section provides some background conceptual information about Oracle8i
objects and collections.

For additional conceptual and reference information about Oracle objects,
references, and collections, refer to the Oracle8i SQL Reference and the Oracle8i
Application Developer’s Guide - Fundamentals.

For information about how to declare objects and collections, see "User-Defined
Types in the Database" on page 6-18.

Oracle Object Fundamentals

Oracle objects (SQL objects) are composite data structures that group related data
items, such as facts about each employee, into a single data unit. An object type is
functionally similar to a Java class—you can populate and use any number of
individual objects of a given object type, just as you can instantiate and use
individual objects of a Java class.

For example, you can define an object type EMPLOYEE that has the attributes nane
(type CHAR), addr ess (type CHAR), phonenunber (type CHAR), and
enpl oyeenunber (type NUVBER).

Oracle objects can also have methods—stored procedures associated with the object
type. These methods can be either static methods or instance methods that can be
implemented either in PL/SQL or in Java. Their signatures can include any number
of input, output, or input-output parameters. All of this depends on how they are
initially defined.

Oracle Collection Fundamentals
There are two categories of Oracle collections (SQL collections):
« variable-length arrays (VARRAY types)
= nested tables (TABLE types)

Both categories are one-dimensional, although the elements can be complex object
types. VARRAY types are used for one-dimensional arrays; nested table types are
used for single-column tables within an outer table. A variable of any VARRAY type
can be referred to as a VARRAY; a variable of any nested table type can be referred
to as a nested table.

A VARRAY, as with any array, is an ordered set of data elements, with each element
having an index and all elements being of the same datatype. The size of a VARRAY

6-4 SQLJ Developer's Guide and Reference

Oracle Objects and Collections

refers to the maximum number of elements. Oracle VARRAYs are of variable size
(thus the name), but the maximum size of any particular VARRAY type must be
specified when the VARRAY type is declared.

A nested table is an unordered set of elements. Nested table elements within a table
can themselves be queried in SQL, but not in SQLJ. A nested table, as with any
table, is not created with any particular number of rows—this is determined
dynamically.

Notes: The elements in a VARRAY or the rows in a nested table
can be of a user-defined object type, and VARRAY and nested table
types can be used for attributes in a user-defined object type. Oracle
does not, however, support any nesting of collection types. The
elements of a VARRAY or rows of a nested table cannot be of
another VARRAY or nested table type, nor can these elements be of a
user-defined object type that has VARRAY or nested table
attributes.

Object and Collection Datatypes

User-specified object and collection definitions in Oracle8i function as SQL datatype
definitions. You can then use these datatypes, as with any other datatype, in
defining table columns, SQL object attributes, and stored procedure or function
parameters. In addition, once you have defined an object type, the related object
reference type can be used as any other SQL reference type.

Once you have defined EMPLOYEE as an Oracle object, as described in "Oracle
Object Fundamentals" on page 6-4, it becomes an Oracle datatype, and you can
have a table column of type EMPLOYEE just as you can have a table column of type
NUMBER. Each row in an EMPLOYEE column contains a complete EMPLOYEE object.
You can also have a column type of REF EMPLOYEE, consisting of references to
EMPLOYEE obijects.

Similarly, you can define a variable-length array MYVARR as VARRAY(10) of
NUMBER and a nested table NTBL of CHAR(20) . The MYVARR and NTBL collection
types become Oracle datatypes, and you can have table columns of either type.
Each row of a MYVARR column consists of an array of up to ten numbers; each row
of an NTBL column consists of 20 characters.

Objects and Collections 6-5

Custom Java Classes

Custom Java Classes

The purpose of custom Java classes is to provide a way to convert data between the
database and your Java application and make the data accessible, particularly in
supporting objects and collections or if you want to perform custom data
conversions.

It is generally advisable to provide custom Java classes for all user-defined types
(objects and collections) that you use in a SQLJ application. The Oracle JDBC driver
will use instances of these classes in converting data, which is more convenient and
less error-prone than using the weakly typed or acl e. sql . STRUCT, REF, and
ARRAY classes.

Custom Java classes are first-class types that you can use to read from and write to
user-defined SQL types transparently.

To be used in SQLJ iterators or host expressions, a custom Java class must
implement either the or acl e. sql . Cust onDat um(and Cust onDat unfact or y)
interface or the standard j ava. sql . SQLDat a interface. This section provides an
overview of these interfaces and custom Java class functionality, covering the
following topics:

« Custom Java Class Interface Specifications

« Custom Java Class Support for Object Methods
« Custom Java Class Requirements

« Compiling Custom Java Classes

« Reading and Writing Custom Data

« Additional Uses for CustomDatum Implementations

Custom Java Class Interface Specifications

This section discusses specifications of the Cust onDat umand
Cust onDat unfact or y interfaces and of the SQLDat a interface.

CustomDatum and CustomDatumFactory Specifications

Oracle provides the interface or acl e. sql . Cust omDat umand the related interface
oracl e. sqgl . Cust onDat unfact ory to use in mapping and converting Oracle
object types, reference types, and collection types to custom Java classes.

Data is passed to or from the database in the form of an or acl e. sql . Dat um
object, with the underlying data being in the format of the appropriate

6-6 SQLJ Developer's Guide and Reference

Custom Java Classes

oracl e. sql . Dat umsubclass—or acl e. sql . STRUCT, for example. This data is
still in its codified database format; the or acl e. sql . Dat umobiject is just a
wrapper. (For information about classes in the or acl e. sql package that support
Oracle type extensions, see the Oracle8i JDBC Developer’s Guide and Reference.)

The Cust omDat uminterface specifies a t oDat un() method for data conversion
from Java format to database format. This method takes as input your

Or acl eConnect i on object (which is required by the Oracle JDBC drivers) and
converts data to the appropriate or acl e. sql . * representation. The

Or acl eConnect i on object is necessary so that the JDBC driver can perform
appropriate type checking and type conversions at runtime. Here is the

Cust onDat umand t oDat un{) specification:

interface oracl e. sgl . Qust onbat um

{
}

oracl e. sgl . Dat umt oDat un{ O acl eConnection c);

The Cust onDat unfact ory interface specifies acr eat e() method that constructs
instances of your custom Java class, converting from database format to Java
format. This method takes as input a Dat umobject containing data from the
database, and a typecode, such as Or acl eTypes. RAWindicating the SQL type of
the underlying data. It returns an object of your custom Java class, which
implements the Cust onDat uminterface. This object receives its data from the

Dat umobject that was input. Here is the Cust onDat unfact ory and cr eat e()
specification:

interface oracl e. sql . Qust onbat unfFact ory

{
}

oracl e. sgl . Qust onat um cr eat e(oracl e. sql . Datumd, int sql Type);

To complete the relationship between the Cust onDat umand

Cust onDat unfact ory interfaces, you must implement a static get Fact or y()
method in any custom Java class that implements the Cust onrDat uminterface. This
method returns an object that implements the Cust onDat untact or y interface and
that, therefore, can be used to create instances of your custom Java class. This
returned object can itself be an instance of your custom Java class, and its

creat e() method is used by the Oracle JDBC driver to produce further instances
of your custom Java class, as necessary.

Objects and Collections 6-7

Custom Java Classes

Note: JPublisher implements the Cust orDat umand its

t oDat um() method and the Cust onDat unfact ory and its
creat e() method in a single custom Java class; however,

toDat um() and creat e() are specified in different interfaces to
allow the option of implementing them in separate classes. You can
have one custom Java class that implements Cust onDat um its

t oDat un() method, and the get Fact or y() method, and have a
separate factory class that implements Cust onDat unfact or y and
its cr eat e() method. Although, for purposes of discussion here,
the assumption is that both interfaces are implemented in a single
class.

For information about Oracle SQLJ requirements of a class that implements
Cust onDat um see "Oracle Requirements for Classes Implementing CustomDatum
on page 6-10.

For more information about the Cust onDat umand Cust onDat unfact ory
interfaces, the or acl e. sql classes, and the Or acl eTypes class, see the Oracle8i
JDBC Developer’s Guide and Reference.

If you use JPublisher, specifying - usert ypes=or acl e will result in JPublisher
generating custom Java classes that implement the Cust onDat umand
Cust onDat unfact ory interfaces and the get Fact or y() method.

SQLData Specification

Standard JDBC 2.0 supplies the interface j ava. sql . SQLDat a to use in mapping
and converting structured object types to Java classes. This interface is intended for
mapping structured object types only, not object references, collections/arrays, or
other SQL types.

The SQLDat a interface is a JDBC 2.0 standard, specifying ar eadSQL() method to
read data from the database into a Java object, and a wr i t eSQL() method to write
data to the database from a Java object.

For information about functionality that is required of a class that implements
SQLDat a, see "Requirements for Classes Implementing SQLData" on page 6-12.

For additional information about standard SQLDat a functionality, refer to the Sun
Microsystems JDBC 2.0 API Specification.

If you use JPublisher, specifying - user t ypes=j dbc will result in JPublisher
generating custom Java classes that implement the SQLDat a interface.

6-8 SQLJ Developer's Guide and Reference

Custom Java Classes

Custom Java Class Support for Object Methods

Methods of Oracle objects can be implemented as wrappers in custom Java classes.
Whether the underlying stored procedure is written in PL/SQL or is written in Java
and published to SQL is invisible to the user.

A Java wrapper method used to invoke a server method requires a connection to
communicate with the server. The connection object can be provided as an explicit
parameter or can be associated in some other way (as an attribute of your custom
Java class, for example).

If the connection object used by the wrapper method is a non-static attribute, then
the wrapper method must be an instance method of the custom Java class in order
to have access to the connection. Custom Java classes generated by JPublisher use
this technique.

There are also issues regarding output and input-output parameters in methods of
Oracle objects. In the database, if a stored procedure (SQL object method) modifies
the internal state of one of its arguments, then the actual argument passed to the
stored procedure is modified. In Java this is not possible. When a JDBC output
parameter is returned from a stored procedure call, it is stored in a newly created
object. The original object identity is lost.

One way to return an output or input-output parameter to the caller is to pass the
parameter as an element of an array. If the parameter is input-output, the wrapper
method takes the array element as input; after processing, the wrapper assigns the
output to the array element. Custom Java classes generated by JPublisher use this
technique—each output or input-output parameter is passed in a one-element array.

When you use JPublisher, it implements wrapper methods by default. This is true
for generated classes implementing either the SQLDat a interface or the

Cust onDat uminterface. To disable this feature, set the JPublisher - net hods flag to
f al se. See the Oracle8i JPublisher User’s Guide for more information.

Note: If you are implementing a custom Java class yourself, there
are various ways that you can implement wrapper methods. Data
processing can be done either in the server in the SQL object
method, or on the client in the wrapper method. To see how
JPublisher implements wrapper methods, and whether this may
meet your needs, see "JPublisher Implementation of Wrapper
Methods" on page 6-37.

Objects and Collections 6-9

Custom Java Classes

Custom Java Class Requirements

Custom Java classes must satisfy certain requirements to be recognized by the
Oracle SQLJ translator as valid host variable types, and to allow type-checking by
the translator.

This section discusses Oracle-specific requirements of custom Java classes so they
can support this functionality. Requirements for both Cust onDat um
implementations and SQLDat a implementations are covered.

Oracle Requirements for Classes Implementing CustomDatum

Oracle requirements for Cust omDat umimplementations are primarily the same for
any kind of custom Java class but vary slightly depending on whether the class is
for mapping to objects, object references, collections, or some other SQL type.

These requirements are as follows:
« Theclass implements the or acl e. sql . Cust onDat uminterface.

« Theclass implements a method get Fact or y() that returns an
oracl e. sqgl . Cust onDat unfact or y object as follows:

public static oracle.sql.Qustonbat unfFactory get Factory();
« Theclass has a constant _SQL_ TYPECODE initialized to the

oracl e.jdbc. driver. Oracl eTypes typecode of the Dat umsubclass that
t oDat um() returns.

For custom object classes:
public static final int _SQ TYPECQXE = O acl eTypes. STRUCT;

For custom reference classes:

public static final int _SQ TYPEQOXE = Q acl eTypes. REF;

For custom collection classes:

public static final int _SQ TYPEGQXTE = O acl eTypes. ARRAY;

For other uses, some other typecode might be appropriate. For example, for
using a custom Java class to serialize and deserialize Java objects into or out of

RAWfields in the database, a _SQ._TYPECODE of Or acl eTypes. RAWiIs used.
See "Serializing Java Objects" on page 6-63.

(The Or acl eTypes class simply defines a typecode, which is an integer
constant, for each Oracle datatype. For standard SQL types, the Or acl eTypes

6-10 SQLJ Developer’s Guide and Reference

Custom Java Classes

entry is identical to the entry in the standard j ava. sqgl . Types type
definitions class.)

For custom Java classes with _SQL_TYPECODE of STRUCT, REF, or ARRAY (in
other words, for custom Java classes that represent objects, object references, or
collections), the class has a constant that indicates the relevant user-defined
type name.

Custom object classes and custom collection classes must have a constant
(string) _SQ__ NAME initialized to the SQL name you declared for the
user-defined type, as follows:

public static final Sring _SQ_NAME = UDT nang;

Custom object class example for a user-defined PERSON object:
public static final Sring _SQ_NAME = "PERSON';

or (to specify the schema, if that is appropriate):

public static final Sring _SQ NAME = " SQOIT. PERSCN';

Custom collection class example for a collection of PERSON objects, which you
have declared as PERSON_ARRAY:

public static final Sring _SQ NAME = " PERSON ARRAY";

Custom reference classes must have a constant (string) _SQL_BASETYPE

initialized to the SQL name you declared for the user-defined type being
referenced, as follows:

public static final Sring _SQ_BASETYPE = (DT nang,

Custom reference class example (for PERSON references):
public static final Sring _SQ BASETYPE = "PERSON';

For other Cust onDat umuses, specifying a UDT name is not applicable.

Notes: The collection type name reflects the collection type, not
the base type. For example, if you have declared a VARRAY or
nested table type PERSON_ARRAY for PERSON objects, then the
name of the collection type that you specify for the _SQL_NAME
entry is PERSON_ARRAY, not PERSON.

Objects and Collections 6-11

Custom Java Classes

Requirements for Classes Implementing SQLData

Classes that implement SQLDat a must satisfy the requirements for type map
definitions as outlined in the SQLJ ISO standard. Alternatively, SQLData wrapper
classes can identify the associated SQL object type through apubl ic static
final field. This non-standard functionality was introduced in SQLJ version 8.1.6
and continues to be supported. In both cases, you must run your SQLJ application
under JDK 1.2 or later.

Notes:

« SQ.Dat a, unlike Cust onDat um is for mapping structured
object types only. It is not for object references,
collections/arrays, or any other SQL types. If you are not using
Cust onDat um then your only choices for mapping object
references and collections are the weak typesj ava. sql . Ref
andj ava. sql . Arr ay, respectively (or or acl e. sql . REF and
oracl e. sgl . ARRAY).

« SQLDat a implementations require a JDK 1.2.x environment.
Although Oracle JDBC supports JDBC 2.0 extensions under
JDK 1.1.x through the or acl e. j dbc2 package, Oracle SQLJ
does not.

Mapping Specified in Type Map Resource First, consider the mapping representation
according to the SQLJ ISO-standard. Assume that Addr ess, pack. Per son, and
pack. Manager . | nner PM(where | nner PMis an inner class of Manager) are three
"wrapper classes" that implementj ava. sql . SQLDat a.

= You must employ these classes only in statements that use explicit connection
context instances of a declared connection context type. Assume, for example,
that this type is called SDCont ext . Example:

Addr ess a .

pack. Person p=..;

pack. Manager . | nner PMpm=.. . ;

SDCont ext ¢t x = new SDMont ext (url, user, pwd, fal se);
#sgl [etx] { ... ta... :p... :pm... }

= The connection context type must have been declared using the W THattribute
t ypeMap that specifies an associated class implementing a
java.util.PropertyResourceBundl e. In the preceding example,
SDCont ext might have been declared as follows.

6-12 SQLJ Developer’s Guide and Reference

Custom Java Classes

#sgl public static context SDContext wth (typeMap="SDvap");

« The type map resource must provide the mapping from SQL object types to
corresponding Java classes that implement the j ava. sql . SQLDat a interface.
This mapping is specified with entries of the following form:

cl ass. g ava _cl ass_nane>=STRUCT <sql_t ype nane>

The keyword STRUCT can also be omitted. In our example, the resource file
SDVap. pr operti es might contain the following entries.

cl ass. Addr ess=STRUCT SQOTT. ACDRESS
cl ass. pack. Per son=PERSON
cl ass. pack. Manager $I nner PM-STRUCT PRCDUCT_VANAGER

Although ". " separates package and classname, you must use the character "$"
to separate an inner class name.

This mechanism is more complicated than the non-standard alternative (discussed
next). Furthermore, it is not possible to associate a type map resource with the
default connection context. The advantage is that all the mapping information is
placed in a single location—the type map resource.This means that the type
mapping in an already compiled application can be easily adjusted at a later time,
for example to accommodate new SQL types and Java wrappers in an expanding
SQL-Java type hierarchy. Note, however, that in release 8.1.7, Oracle does not yet
support inheritance for SQL object types.

Objects and Collections 6-13

Custom Java Classes

Notes:

« You must employ the SQLJ runtime library runt i nel2. zi p to
use this feature. Type maps are represented as
java. util . Map objects. These are exposed in the SQLJ
runtime API and, thus, cannot be supported by the
JDK-independent generic library runti ne. zi p.

= You must use the Oracle SQLJ runtime and Oracle-specific
profile customization if your SQLDat a wrapper classes occur
as OUT or INOUT parameters in SQLJ statements. This is
because the SQL type of such parameters is required for
regi st er Qut Par anet er () by the Oracle JDBC driver.
Furthermore, for OUT parameter type registration, the SQL
type is "frozen in" by the type map in effect during translation.

« The SQLJ type map is independent from any JDBC type map
you may be using on the underlying connection. Thus, you
must be careful if you are mixing SQLJ and JDBC code that
both use SQLDat a wrappers. However, you can easily extract
the type map in effect on a given SQLJ connection context:

ct x. get TypeMap() ;

Mapping Specified in Static Field of Wrapper Class Alternatively, a class that implements
SQLDat a can satisfy the following non-standard requirement.

« Thelavaclass declares the public static final String-valued field
_SQL_NAME. This field defines the name of the SQL type that is being wrapped
by the Java class.

In our example, the Addr ess class would have the following field declaration:
public static final Sring _SQ NAME="SOOIT. ADDRESS';

The following declaration would be in pack. Per son:
public static final Sring _SQ NAME="PERSCON';

And the class pack. Manager . | nner PMwould hold the following:
public static final Sring _SQ NAME="PRODUCT MANAGER';

6-14 SQLJ Developer’s Guide and Reference

Custom Java Classes

Note that JPublisher always generates SQLDat a wrapper classes with the
_SQL_NAME field. However, this field is ignored in SQLJ statements that reference a

type map.

Notes:

« Ifaclass that implements the _SQL_NANME field is used in a
SQLJ statement with an explicit connection context type and
associated type map, then that type map is used, and the
_SQL_NAME field is ignored, thereby simplifying migration of
existing SQLJ programs to the new SQLJ ISO standard.

« The static SQL-Java type correspondence specified in the
_SQL_NAME field is independent from any JDBC type map you
may be using on the underlying connection. Thus, you must be
careful if you are mixing SQLJ and JDBC code that both use
SQLDat a wrappers.

Compiling Custom Java Classes

You can include the . j ava file names for your custom Java classes (whether

Cust onDat umor SQLDat a implementations) on the SQLJ command line, together
with your . sqgl j file names. However, this is not necessary if the SQLJ

- checksource flag is set to t r ue (the default) and your CLASSPATH includes the
directory where the custom Java source is located.

For example, if Obj ect Deno. sql j uses Oracle object types ADDRESS and PERSON
and you have run JPublisher or otherwise produced custom Java classes for these
objects, then you can run SQLJ as follows.

If - checksour ce=t r ue (default) and CLASSPATH includes custom Java source
location:

%sqlj bjectleno. sqlj

Or, if -checksour ce=f al se:

%sqlj (bjectDeno.sqlj Address.java AddressRef.java Person. java PersonRef.java

Alternatively, you can use your Java compiler to compile the custom Java source
files directly. If you do this, you must do it prior to translating the . sqgl j file.

Objects and Collections 6-15

Custom Java Classes

Running the SQLJ translator is discussed in Chapter 8, "Translator Command Line
and Options". For more information about the - checksour ce flag, see "Source
Check for Type Resolution (-checksource)" on page 8-57.

Note: Because Cust onmDat umimplementations rely on
Oracle-specific features, SQLJ will report numerous portability
warnings if you do not use the translator portability setting
-war n=noport abl e (the default). For information about the
- war n flag, see "Translator Warnings (-warn)" on page 8-42.

Reading and Writing Custom Data

Through the use of custom Java class instances, Oracle SQLJ and JDBC allow you to
read and write user-defined types as though they are built-in types. Exactly how
this is accomplished is transparent to the user.

For the mechanics of how data is read and written, for both CustomDatum
implementations and SQLData implementations, see the Oracle8i JDBC Developer’s
Guide and Reference.

Additional Uses for CustomDatum Implementations

To this point, discussion of custom Java classes has been for use as one of the
following:

« wrappers for SQL objects—custom object classes, for use with
oracl e. sgl . STRUCT instances from the database

« wrappers for SQL references—custom reference classes, for use with
oracl e. sql . REF instances from the database

« wrappers for SQL collections—custom collection classes, for use with
oracl e. sgl . ARRAY instances from the database

It might be useful, however, to provide custom Java classes to wrap other

oracl e. sqgl . * types as well, for customized conversions or processing. You can
accomplish this with classes that implement Cust onmDat um(but not SQLDat a), as
in the following examples:

« Perform encryption and decryption or validation of data.

« Perform logging of values that have been read or are being written.

6-16 SQLJ Developer’s Guide and Reference

Custom Java Classes

« Parse character columns (such as character fields containing URL information)
into smaller components.

« Map character strings into numeric constants.

« Map data into more desirable Java formats (such as mapping a DATE field to
java. util . Dat e format).

» Customize data representation (for example, data in a table column is in feet,
but you want it represented in meters after it is selected).

« Serialize and deserialize Java objects—into or out of RAWfields, for example
This last use is further discussed in "Serializing Java Objects" on page 6-63.

"General Use of CustomDatum—BetterDate.java" on page 12-48 provides an
example of a class (Bet t er Dat e) that implements Cust onDat umand can be used
instead of j ava. sql . Dat e to represent dates.

Note: This sort of functionality is not possible through the
SQLDat a interface, as SQLDat a implementations can wrap only
structured object types.

Objects and Collections 6-17

User-Defined Types in the Database

User-Defined Types in the Database

This section contains examples of creating and using user-defined object types and
collection types in Oracle8i. A full SQL script for all the user-defined types
employed in the object and collection sample applications is in "Definition of Object
and Collection Types" on page 12-20.

For more information about any of the SQL commands used here, refer to the
Oracle8i SQL Reference.

Creating Object Types
Oracle SQL commands to create object types are of the following form:

CREATE TYPE typenane AS CBIECT

(
attrnanel dat at ypel,

attrnane2 dat at ype2,

attr nameN dat at ypeN
);

Where t ypenane is the desired name of your object type, at t r nanel through
at t r naneNare the desired attribute names, and dat at ypel through dat at ypeN
are the attribute datatypes.

The remainder of this section provides an example of creating user-defined object
types in Oracle8i.

The following items are created using the SQL script below:
« two object types, PERSON and ADDRESS
= atyped table for PERSON objects

= an EMPLOYEES table that includes an ADDRESS column and two columns of
PERSON references

[*** Usi ng user-defined types (WDTS) in SQLJ ***/
/

[*** (reate ACDRESS WDT ***/

CREATE TYPE ADDRESS AS (BJECT

(
street VARCHAR 60) ,
city VARCHAR 30),
state HAR 2),

zi p_code CHAR(5)

6-18 SQLJ Developer’s Guide and Reference

User-Defined Types in the Database

)
/

[*** (reate PERSON WDT contai ning an enbedded ADDRESS DT ***/
CREATE TYPE PERSON AS (BJIECT

(
nane VARCHAR(30),
ssh NUMBER,
addr ADDRESS
)
/
/*** Oreate a typed table for PERSON obj ects ***/
CREATE TABLE persons CF PERSON
/
[*** (reate arelational table wth two colums that are REFs
to PERSON obj ects, as well as a col unm which is an Address ADT. ***/
CREATE TABLE enpl oyees

(
enpnunber | NTEGER PR MARY KEY,
person_dat a R PERSQON
manager REF PERSON
of fi ce_addr ADDRESS,
sal ary NUMBER

)

/*** Insert some data--2 objects into the persons typed table ***/
I NSERT | NTO per sons VALUES (
PERSON(’ V@Il f gang Anadeus Mozart', 123456,
ADDRESS(’ AmBerg 100', 'Salzburg', 'AT,’10424')))
/
I NSERT | NTO per sons VALUES (
PERSON(’ Ludwi g van Beet hoven', 234567,
ACDRESS(’ Rhei nal lee’, "Bonn', "'DE, '69234')))
/
/** Put a rowin the enpl oyees table **/
I NSERT | NTO enpl oyees (enpnunber, office_addr, sal ary) VALUES (
1001,
ACDRESS(’ 500 Gracl e Parkway’, ' Redwood Shores’, 'CA, '94065'),
50000)
/
/** Set the manager and PERSON REFs for the enpl oyee **/
UPDATE enpl oyees
SET nmanager =
(SELECT REF(p) FROM persons p WHERE p. nane = ' Wl f gang Amadeus Mbzart’)
/
UPDATE enpl oyees
SET person_data =

Objects and Collections 6-19

User-Defined Types in the Database

(SELECT REF(p) FROM persons p WHERE p. nane = ' Ludw g van Beet hoven’)

Note: Use of a table alias, such as p above, is a recommended
general practice in Oracle SQL, especially in accessing tables with
user-defined types. It is required syntax in some cases where object
attributes are accessed. Even when not required, it helps in
avoiding ambiguities. See the Oracle8i SQL Reference for more
information about table aliases.

Creating Collection Types

There are two categories of collections: variable-length arrays (VARRAYs) and
nested tables.

Oracle SQL commands to create VARRAY types are of the following form:

CREATE TYPE typenane | S VARRAY(n) CF dat at ype;

Where t ypenane is the desired name of your VARRAY type, n is the desired
maximum number of elements in the array, and dat at ype is the datatype of the

array elements. You must specify the maximum number of elements in the array.
For example:

CREATE TYPE nyvarr |'S VARRAY(10) CF | NTEGER

Oracle SQL commands to create nested table types are of the following form:
CREATE TYPE typename AS TABLE CF dat at ype,

Where t ypenane is the desired name of your nested table type, and dat at ype is
the datatype of the table elements (this can be a user-defined type, as well as a
standard datatype). A nested table is limited to one column, although that one

column type can be a complex object with multiple attributes. The nested table, as
with any database table, can have any number of rows. For example:

CREATE TYPE person_array AS TABLE CF person;

This command creates a nested table where each row consists of a PERSON object.

The rest of this section provides an example of creating a user-defined collection
type (as well as object types) in Oracle8i.

The following items are created and populated using the SQL script below:

6-20 SQLJ Developer’s Guide and Reference

User-Defined Types in the Database

« two object types, PARTI Cl PANT_T and MODULE T
= acollection type, MODULETBL_T, which is a nested table of MODULE_T objects

« aPRQIECTS table that includes a column of PARTI Cl PANT_T references and a
column of MODULETBL_T nested tables

« acollection type PHONE_ARRAY, which is a VARRAY of VARCHAR2(30)

» PERSONand ADDRESS objects (repeating the same definitions used earlier in
"Creating Object Types" on page 6-18)

« an EMPLOYEES table, which includes a PHONE ARRAY column

RemThis is a SQ*P us script used to create schema to denonstrate coll ecti on
Rem nani pul ation in SQJ

CREATE TYPE PARTI A PANT_T AS GBIJECT (
enpho NUMBER(4),
enane VARCHAR2(20),
job VARCHAR2(12) ,
nmgr NUMBER(4) ,
hi redat e DATE,
sal NUMBER(7, 2) ,
deptno NUMBER 2))
/
show errors
CREATE TYPE MDULE T AS QBIECT (
nodul e_id NUMBER4),
nmodul e_nane VARCHAR2(20),
nodul e_owner REF PARTI A PANT T,
nodul e_start _dat e DATE,
nmodul e_dur ati on NUMBER)
/
show errors
create TYPE MDUWETBL T AS TABLE - MDULE T;
/
show errors
CREATE TABLE proj ects (
id NUMBER 4),
nane VARCHAR 30),
owner REF PARTI A PANT T,
start _date DATE,

duration NUMBER 3),
nmodul es MIDULETBL T) NESTED TABLE nodul es STORE AS nodul es_t ab ;

show errors

Objects and Collections 6-21

User-Defined Types in the Database

CREATE TYPE PHONE_ARRAY | S VARRAY (10) CF var char 2(30)
/

[*** (reate ACDRESS WDT ***/
CREATE TYPE ACDRESS AS (BIECT

(
street VARCHAR 60) ,
city VARCHAR 30),
state HAR 2),

Zi p_code CHAR(5)
)
/
/*** (reate PERSON WDT containi ng an enbedded ADDRESS WDT ***/
CREATE TYPE PERSON AS GBJECT
(
nane VARCHAR(30),
ssh NUMBER,
addr ADDRESS
)
/
CREATE TABLE enpl oyees

(enpnunber | NTEGER PR MARY KEY,
person_dat a REF per son,
nanager REF person,
of fi ce_addr addr ess,
sal ary NUMBER,
phone_nuns phone_ar ray

6-22 SQLJ Developer’s Guide and Reference

JPublisher and the Creation of Custom Java Classes

JPublisher and the Creation of Custom Java Classes

Oracle offers flexibility in how users can customize the mapping of Oracle object
types, reference types, and collection types to Java classes in a strongly typed
paradigm. Developers have the following choices in creating these custom Java
classes:

« using Oracle JPublisher to automatically generate custom Java classes and using
those classes directly without modification

« using JPublisher to automatically generate custom Java classes and subclassing
them to create custom Java classes with added functionality

« manually coding custom Java classes without using JPublisher, provided that
the classes meet the requirements stated in "Custom Java Class Requirements"
on page 6-10

Although you have the option of manually coding your custom Java classes, using
JPublisher is advisable. If you need special functionality, you can subclass a class
that JPublisher generates.

JPublisher can implement either the Oracle or acl e. sql . Cust onDat uminterface
or the standard j ava. sql . SQLDat a interface when it generates a custom object
class. If you choose the Cust onDat umimplementation, then JPublisher will also
generate a custom reference class.

The SQLDat a interface is not intended for custom reference or custom collection
classes. If you want your code to be portable, you have no choice but to use
standard, weakly typed j ava. sqgl . Ref objects to map to references, and

j ava. sql . Arr ay objects to map to collections.

This manual provides only a minimal level of information and detail regarding the
JPublisher utility. See the Oracle8i JPublisher User’s Guide for more information.

What JPublisher Produces

When you use JPublisher to generate custom Java classes, you can use either a
Cust onDat umimplementation (for custom object classes, custom reference classes,
or custom collection classes) or a SQLDat a implementation (for custom object
classes only). A Cust onDat umimplementation will also implement the

Cust onDat unfact ory interface, for creating instances of the custom Java class.

This is controlled by how you set the JPublisher - user t ypes option. A setting of
or acl e specifies a Cust onDat umimplementation; a setting of j dbc specifies a
SQLDat a implementation.

Objects and Collections 6-23

JPublisher and the Creation of Custom Java Classes

CustomDatum Implementation

When you run JPublisher for a user-defined object type and choose the

Cust onDat um(and Cust onDat unfact or y) implementation for your custom
object class, JPublisher automatically creates the following:

a custom object class to act as a type definition to correspond to your Oracle
object type

This class includes getter and setter methods for each attribute. The method
names are of the form get Foo() and set Foo() for attribute f 0o.

In addition, JPublisher by default will generate wrapper methods in your class
that invoke the associated Oracle object methods executing in the server. This
can be disabled, however, by setting - met hods=f al se. This option is
described later in this section.

a related custom reference class for object references to your Oracle object type

This class includes a get Val ue() method that returns an instance of your
custom object class, and a set Val ue() method that updates an object value in
the database, taking as input an instance of the custom object class.

custom classes for any object or collection attributes of the top-level object

This is necessary so that attributes can be materialized in Java whenever an
instance of the top-level class is materialized.

When you run JPublisher for a user-defined collection type, choosing the
Cust onDat umimplementation, JPublisher automatically creates the following:

a custom collection class to act as a type definition to correspond to your Oracle
collection type

This class includes overloaded get Array() and set Array() methods to
retrieve or update a collection as a whole, a get El enent () method and
set El enent () method to retrieve or update individual elements of a
collection, and additional utility methods.

a custom object class for the elements, if the elements of the collection are
objects

This is necessary so that object elements can be materialized in Java whenever
an instance of the collection is materialized.

JPublisher-generated custom Java classes in any of these categories implement the
Cust onDat uminterface, the Cust onDat unfact or y interface, and the
get Fact ory() method.

6-24 SQLJ Developer’s Guide and Reference

JPublisher and the Creation of Custom Java Classes

Note: If you specify the Cust onDat umimplementation, the
generated classes will use Oracle-specific features and therefore
will not be portable.

SQLData Implementation

As with the Cust onDat umimplementation, when you run JPublisher for a
user-defined object type and choose the SQLDat a implementation for your custom
object class, JPublisher will produce a custom object class to act as a type definition
to correspond to your Oracle object type. This class will include the following:

« getter and setter methods for each attribute

« implementations of the standard SQ_Dat a interface r eadSQL() and
writeSQ. () methods

« wrapper methods that invoke the Oracle object methods executing in the server
(unless you specify - met hods=f al se when you run JPublisher)

Because the SQLDat a interface is intended only for objects, however, and not for
references or collections, JPublisher will not generate a custom reference class for
references to the Oracle object type. You will have to use standard, weakly typed
j ava. sgl . Ref instances, or perhaps or acl e. sql . REF instances if you do not
require portability. Note that REF instances, like custom reference class instances,
have Oracle extension methods get Val ue() and set Val ue() to read or write
instances of the referenced object. Standard Ref instances do not have this
functionality.

Similarly, because you cannot use a SQLDat a implementation for a custom
collection class, you must use standard, weakly typed j ava. sql . Arr ay instances,
or perhaps or acl e. sqgl . ARRAY instances if you do not require portability. Ar r ay
and ARRAY instances, like custom collection class instances, have get Array()
functionality to read the collection as a whole or in part, but do not have the
element-level access and writability offered by the custom collection class

get El ement () and set El ement () methods.

Note: The SQLDat a interface is defined in the JDBC 2.0
specification to be portable. However, if you want the SQLDat a
implementation produced by JPublisher to be portable, you must
avoid using any Oracle-specific features and Oracle type mapping
(which uses the Oracle-specific or acl e. sqgl . * classes).

Objects and Collections 6-25

JPublisher and the Creation of Custom Java Classes

Generating Custom Java Classes

This section discusses key JPublisher command-line functionality for specifying the
user-defined types that you want to map to Java and for specifying object class
names, collection class names, attribute type mappings, and wrapper methods.
These key points can be summarized as follows:

« Specify user-defined types to map to Java. You can specify the custom object
and custom collection class names for JPublisher to use, or you can accept the
default names (use the JPublisher - sql , - user, and - case options).

« Specify the implementation to use (Cust onDat umor SQLDat a; use the
JPublisher - usert ypes option).

« Optionally specify attribute type mappings (use the JPublisher - XXXt ypes
options: - nunbert ypes, - bui | ti ntypes, and - | obt ypes).

« Choose whether or not JPublisher will create wrapper methods, in particular for
Oracle object methods (use the JPublisher - met hods flag, which is enabled by
default).

Note: Throughout this section, any discussion of custom reference
classes or custom collection classes refers only to Cust onDat um
implementations.

Specify User-Defined Types to Map to Java

In using JPublisher to create custom Java classes, use the - sql option to specify the
user-defined SQL types that you want to map to Java. You can either specify the
custom object class names and custom collection class names, or you can accept the
defaults.

The default names of your top-level custom classes—the classes that will
correspond to the user-defined type names you specify to the - sql option—are
identical to the user-defined type names as you enter them on the JPublisher
command line. Because SQL names in the database are case-insensitive, you can
capitalize them to ensure that your class names are capitalized per Java convention.
For example, if you want to generate a custom class for enpl oyee objects, you can
run JPublisher as follows:

%] pub -sqgl =Enpl oyee . ..

The default names of lower-level classes, such as for hone_addr ess objects that
are attributes of enpl oyee objects, are determined by the JPublisher - case option.

6-26 SQLJ Developer’s Guide and Reference

JPublisher and the Creation of Custom Java Classes

If you do not set the - case option, it is set to m xed. This means that the default
for the custom class name is to capitalize the initial character of the corresponding
user-defined type name and the initial character of every word unit thereafter.
JPublisher interprets underscores (_), dollar signs ($), and any characters that are
illegal in Java identifiers as word-unit separators; these characters are discarded in
the process.

For example, for Oracle object type hone_addr ess, JPublisher would create class
HoneAddr ess in a HonmeAddr ess. j ava source file.

Notes:

=« Remember that Java class names are case-sensitive, although
Oracle object and collection names (and SQL names in general)
are not.

« For backwards compatibility to previous versions of JPublisher,
the - t ypes option is still accepted as an alternative to - sql .

On the JPublisher command line, use the following syntax for the - sql option (you
can specify multiple actions in a single option setting).

- sql =udt 1<: napcl ass1><, udt 2<: napcl ass2>>, . . . , <udt N&: ngpcl assNe> . . .

And use the - user option to specify the database schema. Following is an example:

%] pub -sqgl =Myobj , nycol | : M/Col | A ass -user=scott/tiger

(There can be no space before or after the comma.)

For the Oracle object MYOBJ, this command will name it as you typed it, creating
source Myobj . j ava to define a Myobj class. For the Oracle collection MYCOLL, this
command will create source MyCol | Cl ass. j ava to define aMyCol | Cl ass class.

You can optionally specify schema names in the - sql option—for example, the
scott schema:

%] pub -sqgl =scott.Mobj, scott.nycol | : MCol | Aass -user=scott/tiger

You cannot specify custom reference class names; JPublisher automatically derives
them by adding Ref to custom object class names (relevant to Cust onDat um
implementations only). For example, if JPublisher produces Java source

Myobj . j ava to define custom object class Myobj , then it will also produce Java
source Myobj Ref . j ava to define a Myobj Ref custom reference class.

Objects and Collections 6-27

JPublisher and the Creation of Custom Java Classes

Note: When specifying the schema, such as scot t in the above
example, this is not incorporated into the custom Java class name.

To create custom Java classes for the object and collection types defined in
"User-Defined Types in the Database" on page 6-18, you can run JPublisher as
follows:

%pub -user=scott/tiger -sgl =Address, Person, Phone_array, Participant _t,
Mbdul e_t, Modul et bl _t

Or, to explicitly specify the custom object class and custom collection class names:

%pub -user=scott/tiger -sgl =Address, Person, phone_array: PhoneArray,
participant_t:ParticipantT, nodul e_t: Mdul eT, nodul etbl _t: Mdul etbl T

(Each of the preceding two examples is a single wrap-around command line.)

The second example will produce Java source files Addr ess. j ava,

Addr essRef . j ava, Person. j ava, Per sonRef . j ava, PhoneArray. j ava,
ParticipantT.java,Partici pant TRef.java, Mdul eT. j ava,

Modul eTRef . j ava, and Mbdul et bl T. j ava. Examples of some of these source
files are provided in "JPublisher Custom Java Class Examples" on page 6-38.

So that it knows how to populate the custom Java classes, JPublisher connects to the
specified schema (here, scot t / ti ger) to determine attributes of your specified
object types or elements of your specified collection types.

If you want to change how JPublisher uses character case in default names for the
methods and attributes that it generates, including lower-level custom Java class
names for attributes that are objects or collections, you can accomplish this using
the - case option. There are four possible settings:

« -case=ni xed (default)—The following will be uppercase: the first character of
every word unit of a class name, every word unit of an attribute name, and
every word unit after the first word unit of a method name. All other characters
are in lowercase. JPublisher interprets underscores (_), dollar signs ($), and any
characters that are illegal in Java identifiers as word-unit separators; these
characters are discarded in the process.

« - case=same—Character case is unchanged from its representation in the
database. Underscores and dollar signs are retained; illegal characters are
discarded.

6-28 SQLJ Developer’s Guide and Reference

JPublisher and the Creation of Custom Java Classes

- case=upper —Lowercase letters are converted to uppercase. Underscores and
dollar signs are retained; illegal characters are discarded.

- case=| ower —Uppercase letters are converted to lowercase. Underscores and
dollar signs are retained; illegal characters are discarded.

Note: If you run JPublisher without specifying the user-defined
types to map to Java, it will process all user-defined types in the
schema. Generated class names, for both your top-level custom
classes and any lower-level classes for object attributes or collection
elements, will be based on the setting of the - case option.

Specify Type Mappings

JPublisher offers several choices for how to map user-defined types and their
attribute and element types between SQL and Java. The rest of this section lists
categories of SQL types and the mapping options available for each category.

(See "Supported Types for Host Expressions" on page 5-2 for general information
about how Oracle datatypes map to Java types.)

For more information about JPublisher features or options, see the Oracle8i
JPublisher User’s Guide.

Categories of SQL Types JPublisher categorizes SQL types into the following groups,
with corresponding JPublisher options as noted:

user-defined types (UDT)—Oracle objects, references, and collections

Use the JPublisher - usert ypes option to specify the type-mapping
implementation for UDTs—either a standard SQLDat a implementation or an
Oracle-specific Cust onDat umimplementation.

numeric types—anything stored in the database as SQL type NUVBER

Use the JPublisher - nunber t ypes option to specify type-mapping for numeric
types.

LOB types—SQL types BLOB and CLOB
Use the JPublisher - | obt ypes option to specify type-mapping for LOB types.

built-in types—anything stored in the database as a SQL type not covered by
the preceding categories, for example: CHAR, VARCHAR2, LONG, and RAW

Objects and Collections 6-29

JPublisher and the Creation of Custom Java Classes

Use the JPublisher - bui | ti nt ypes option to specify type-mapping for built-in
types.

Type-Mapping Modes JPublisher defines the following type-mapping modes, two of
which apply to numeric types only:

JDBC mapping (setting j dbc)—Uses standard default mappings between SQL
types and Java native types. For a custom object class, this specifies a SQLDat a
implementation.

Oracle mapping (setting or acl e)—Uses corresponding or acl e. sql types to
map to SQL types. For a custom object, reference, or collection class, this
specifies a Cust onDat umimplementation.

object-JDBC mapping (for numeric types only) (setting obj ect j dbc)—This is
an extension of JDBC mapping. Where relevant, object-JDBC mapping uses
numeric object types from the standard j ava. | ang package (such as

java.l ang. | nt eger, Fl oat, and Doubl e) instead of primitive Java types
(suchasint,fl oat,and doubl e). The j ava. | ang types are nullable; the
primitive types are not.

Bi gDeci mal mapping (for numeric types only) (setting bi gdeci mal)—Uses
j ava. mat h. Bi gDeci mal to map to all numeric attributes; appropriate if you
are dealing with large numbers but do not want to map to the

oracl e. sql . NUMBER type.

Note: Using Bi gDeci mal mapping can significantly degrade
performance.

Mapping the SQL Object Type to Java Use the JPublisher - user t ypes option to
determine how JPublisher will implement the custom Java class that corresponds to
a SQL object type:

A setting of - usert ypes=or acl e (the default setting) instructs JPublisher to
create a Cust onDat umimplementation for the custom object or collection class.

For a custom object class, this will also result in JPublisher producing a
Cust onDat umimplementation for the corresponding custom reference class.

A setting of - user t ypes=j dbc instructs JPublisher to create a SQLDat a
implementation for the custom object class. No custom reference class can be
created—you must use j ava. sql . Ref ororacl e. sql . REF for the reference

type.

6-30 SQLJ Developer’s Guide and Reference

JPublisher and the Creation of Custom Java Classes

This setting is invalid for implementing a custom collection class. (The
SQLDat a interface is intended for mapping SQL object types only.)

The next section discusses type mapping options that you can use for object
attributes and collection elements.

Mapping Attribute or Element Types to Java If you do not specify mappings for the
attribute types of a SQL object type or the element types of a SQL collection type,
then JPublisher uses the following defaults:

« For numeric types, the default mapping is object-JDBC.
« For LOB types, the default mapping is Oracle.
« For built-in type types, the default mapping is JDBC.

If you want alternate mappings, use the - nunbert ypes, - | obt ypes, and
-bui | ti ntypes options as necessary, depending on the attribute types you have
and the mappings you desire.

If an attribute type is itself a SQL object type, it will be mapped according to the
- usertypes setting.

Important: Be especially aware that if you specify a SQLDat a
implementation for the custom object class and want the code to be
portable, you must be sure to use portable mappings for the
attribute types. The defaults for numeric types and built-in types
are portable, but for LOB types you must specify

-1 obt ypes=j dbc.

Summary of SQL Type Categories and Mapping Settings Table 6-1 summarizes JPublisher
categories for SQL types, the mapping settings relevant for each category, and the
default settings.

Table 6-1 JPublisher SQL Type Categories, Supported Settings, and Defaults

SQL Type JPublisher

Category Mapping Option Mapping Settings Default
UDT types -usertypes oracle, jdbc oracle
numeric types -numbertypes oracle, jdbc, objectjdbc, bigdecimal objectjdbc
LOB types -lobtypes oracle, jdbc oracle
built-in types -builtintypes oracle, jdbc jdbc

Objects and Collections 6-31

JPublisher and the Creation of Custom Java Classes

Note: The JPublisher - mappi ng option used in previous releases
will be deprecated but is currently still supported. For information
about how JPublisher converts - mappi ng option settings to
settings for the new mapping options, see the Oracle8i JPublisher
User’s Guide.

Generate Wrapper Methods

In creating custom object classes to map Oracle objects to Java, the - met hods

option instructs JPublisher whether to include Java wrappers for Oracle object
methods (member functions). The default - met hods=t r ue setting generates

wrappers.

Wrapper methods generated by JPublisher are always instance methods, even when
the original object methods are static. See "Custom Java Class Support for Object
Methods" on page 6-9 for more information.

The following example shows how to set the - net hods option:

%] pub -sqgl =Myobj , nycol | : M/Col | A ass -user=scott/tiger -nethods=true

This will use default naming—the Java method names will be derived in the same
fashion as custom Java class names (as described in "Specify User-Defined Types to
Map to Java" on page 6-26), except that the initial character will be lowercase. For
example, by default an object method name of CALC_SAL results in a Java wrapper
method of cal cSal () .

Alternatively, you can specify desired Java method names, but this requires use of a
JPublisher input file and is discussed in "Creating Custom Java Classes and
Specifying Member Names" on page 6-36.

Note: The - met hods option has additional uses as well, such as
for generating wrapper classes for packages, or wrapper methods
for package methods. This is beyond the scope of this manual—see
the Oracle8i JPublisher User’s Guide for information.

Regarding Overloaded Methods If you run JPublisher for an Oracle object that has an
overloaded method where multiple signatures have the same corresponding Java
signature, then JPublisher will generate a uniquely named method for each
signature. It accomplishes this by appending _n to function names, where nis a
number. This is to ensure that no two methods in the generated custom Java class

6-32 SQLJ Developer’s Guide and Reference

JPublisher and the Creation of Custom Java Classes

have the same name and signature. Consider, for example, the SQL functions
defined in creating a MY_TYPE object type:

CREATE (R REPLACE TYPE ny_type AS (BIECT
(

MEVBER FUNCTI ON nyf unc(x | NTEGER
RETURN ny_return IS
BEG N

END,
MEMBER FUNCTI ON nyf unc(y SMALLI NT)

RETURN ny_return IS
BEG N

BEND,

N

Without precaution, both definitions of nyf unc result in the following name and
signature in Java:

nyf unc(| nt eger)

(Because both | NTEGER and SMALLI NT in SQL map to the Java | nt eger type.)

Instead, JPublisher might call one nyf unc_1 and the other myf unc_2. (The _n s
unique for each. In simple cases it will likely be _1, 2, and so on, but it might
sometimes be arbitrary, other than being unique for each.)

Note: How JPublisher handles overloaded wrapper methods
applies to SQL functions created within an object or within a
package, but not to top-level functions—overloading is not allowed
at the top level.

Generate Custom Java Classes and Map Alternate Classes

You can use JPublisher to generate a custom Java class but instruct it to map the
object type (or collection type) to an alternative class instead of to the generated
class.

Objects and Collections 6-33

JPublisher and the Creation of Custom Java Classes

A typical scenario is to treat JPublisher-generated classes as superclasses, subclass
them to add functionality, and map the object types to the subclasses. For example,
presume you have an Oracle object type ADDRESS and want to produce a custom
Java class for it that has functionality beyond what is produced by JPublisher. You
can use JPublisher to generate a custom Java class JAddr ess for the purpose of
subclassing it to produce a class My Addr ess. Under this scenario you will add any
special functionality to MyAddr ess and will want JPublisher to map ADDRESS
objects to that class, not to the JAddr ess class. You will also want JPublisher to
produce a reference class for MyAddr ess, not JAddr ess.

JPublisher has functionality to streamline the process of mapping to alternative
classes. Use the following syntax in your - sgl option setting:

-sql =obj ect _t ype: gener at ed_cl ass: nap_cl ass

For the above example, use this setting:
- sql =ADDRESS:; JAddr ess: M/Addr ess

This generates class JAddr ess in source file JAddr ess. j ava, but does the
following:

« Maps the object type ADDRESS to the MyAddr ess class, not to the JAddr ess
class. Therefore, if you retrieve an object from the database that has an
ADDRESS attribute, then this attribute will be created as an instance of
MyAddr ess in Java. Or, if you retrieve an ADDRESS object directly, you will
retrieve it into a MyAddr ess instance.

« Createsa MyAddr essRef class in MyAddr essRef . j ava, instead of creating a
JAddr essRef class.

You must manually define a MyAddr ess class in a MyAddr ess. j ava source file.
This class implements your required functionality by subclassing JAddr ess.

For further discussion about subclassing JPublisher-generated classes or using them
as fields (continuing the preceding example), see "Extending Classes Generated by
JPublisher" on page 6-42.

JPublisher Input Files and Properties Files

JPublisher supports the use of special input files and standard properties files to
specify type mappings and additional option settings.

6-34 SQLJ Developer’s Guide and Reference

JPublisher and the Creation of Custom Java Classes

Using JPublisher Input Files

You can use the JPublisher - i nput command-line option to specify an input file for
JPublisher to use for additional type mappings.

"SQ."in an input file is equivalent to "- sgl " on the command line, and "AS" or
"GENERATE. . . AS" syntax is equivalent to command-line colon syntax. Use the
following syntax, specifying just one mapping per SQL command:

SQ udt1 <GENERATE Gener at edd ass1> <AS Mapd ass1>
S udt 2 <GENERATE Gener at edd ass2> <AS Mapd ass2>

This generates Gener at edCl ass1 and Gener at edC ass2, but maps udt 1 to
MapC ass1 and udt 2to MapCl ass2.

Input File Example In the following example, JPublisher will pick up the - user
option from the command line and go to input file myi nput . i n for type mappings.

Command line:

%] pub -input=nyinput.in -user=scott/tiger

Contents of input file nyi nput . i n:

SQ Mobj
SQ nycol | AS M/Gol | A ass
SQ enpl oyee GENERATE Enpl oyee AS M/Enpl oyee

This accomplishes the following:

« User-defined type MYOBJ gets the custom object class name Myobj because
that’s how you typed it—JPublisher creates source Myobj . j ava (and
Myobj Ref . j ava).

« User-defined type MYCOLL is mapped to MyCol | Cl ass. JPublisher creates a
MyCol | Cl ass. j ava source file.

» User-defined type EMPLOYEE is mapped to the MyEnpl oyee class. JPublisher
creates source Enpl oyee. j ava and MyEnpl oyeeRef . j ava. If you retrieve an
object from the database that has an EMPLOYEE attribute, this attribute would
be created as an instance of MyEnpl oyee in Java. Or if you retrieve an
EMPLOYEE object directly, presumably you will retrieve it into a MyEnpl oyee
instance. You must manually create source file MyEnpl oyee. j ava to define
class MyEnpl oyee, which would subclass the Enpl oyee class.

Objects and Collections 6-35

JPublisher and the Creation of Custom Java Classes

Using JPublisher Properties Files
You can use the JPublisher - pr ops command-line option to specify a properties file
for JPublisher to use for additional type mappings and other option settings.

In a properties file, "j pub. " (including the period) is equivalent to the
command-line "- " (single-dash), and other syntax remains the same. Specify only
one option per line.

For type mappings, for example, "j pub. sqgl " is equivalent to "- sql ". As on the
command line, but unlike in an input file, you can specify multiple mappings in a
single j pub. sqgl setting.

Properties File Example In the following example, JPublisher will pick up the - user
option from the command line and go to properties file j pub. pr operti es for
type mappings and the attribute-mapping option.

Command line:

%] pub -props=j pub. properties -user=scott/tiger

Contents of properties file j pub. properti es:
j pub. sgl =Myobj , nycol | : M/Col | A ass, enpl oyee: Enpl oyee: M/Enpl oyee
j pub. user t ypes=or acl e

This produces the same results as the input-file example above, explicitly specifying
the or acl e mapping setting.

Note: Unlike SQLJ, JPublisher has no default properties file. To
use a properties file, you must use the - pr ops option.

Creating Custom Java Classes and Specifying Member Names

In generating custom Java classes you can specify the names of any attributes or
methods of the custom class. This cannot be specified on the JPublisher command
line, however—only in a JPublisher input file using TRANSLATE syntax, as follows:

SQA udt <GENERATE Gener at edd ass> <AS Mapd ass> <TRANSLATE nenber nanel AS
Javananel> <, nenbernane2 AS Javanane2> ...

(This is a single wrap-around command line.)

TRANSLATE pairs (member naneNAS JavananeN) are separated by commas.

6-36 SQLJ Developer’s Guide and Reference

JPublisher and the Creation of Custom Java Classes

For example, presume the Oracle object type EMPLOYEE has an ADDRESS attribute
that you want to call HomeAddr ess, and a G VE_RAI SE method that you want to
call gi veRai se() . Also presume that you want to generate an Enpl oyee class but
map EMPLOYEE objects to a MyEnpl oyee class that you will create (this is not
related to specifying member names, but provides a full example of input file
syntax).

SQ enpl oyee GENERATE Enpl oyee AS MEnpl oyee TRANSLATE addr ess AS HoneAddr ess,
A VE RAl SE AS gi veRai se

(This is a single wrap-around command line.)

Notes:

« When you specify member names, any members you do not
specify will be given the default naming.

« The reason to capitalize the specified attribute—HomeAddr ess
instead of homre Addr ess—is that it will be used exactly as
specified to name the accessor methods; get HoneAddr ess(),
for example, follows naming conventions;
get homeAddr ess() does not.

JPublisher Implementation of Wrapper Methods

This section describes how JPublisher generates wrapper methods and how
wrapper method calls are processed at runtime.

Generation of Wrapper Methods
The following points describe how JPublisher generates wrapper methods:

« JPublisher-generated wrapper methods are implemented in SQLJ; therefore,
whenever - met hods=t r ue, the custom object class will be defined ina . sql j
file, instead of in a . j ava file. Run SQLIJ to translate the . sql j file.

« All wrapper methods generated by JPublisher are implemented as instance
methods. This is because a database connection is required for you to invoke
the corresponding server method. Each instance of a JPublisher-generated
custom Java class has a connection associated with it.

Objects and Collections 6-37

JPublisher and the Creation of Custom Java Classes

Runtime Execution of Wrapper Method Calls

The following points describe what JPublisher-generated Java wrapper methods
execute at runtime. In this discussion, "Java wrapper method" refers to a method in
the custom Java object, while "wrapped SQL method" refers to the SQL object’s
method that is wrapped by the Java wrapper method.

The custom Java object is converted to a SQL object and passed to the database,
where the wrapped SQL method is invoked. After this method invocation, the
new value of the SQL object is returned to Java in a new custom Java object,
either as a function return from the wrapped SQL method (if the SQL method is
a stored procedure), or, if there already is a function return, as an array element
in an additional output parameter (this is the case if the SQL method is a stored
function).

Any output or input-output parameter is passed as the element of a
one-element array. (This is to work around logistical issues with output and
input-output parameters, as discussed in "Custom Java Class Support for Object
Methods" on page 6-9.) If the parameter is input-output, then the wrapper
method takes the array element as input; after processing, the wrapper assigns
the output to the array element.

JPublisher Custom Java Class Examples

This section provides examples of JPublisher-generated Cust onDat um
implementations for the following user-defined types (created in "User-Defined
Types in the Database" on page 6-18):

a custom object class (Addr ess, corresponding to the Oracle object type
ADDRESS) and related custom reference class (Addr essRef)

a custom collection class (Mbdul et bl T, corresponding to the Oracle collection
type MODULETBL_T)

Note: For examples of JPublisher-generated SQLDat a
implementations, as well as further examples of
JPublisher-generated Cust onDat umimplementations, see the
Oracle8i JPublisher User’s Guide.

Custom Object Class—Address.java

Following is an example of the source code that JPublisher generates for a custom
object class. Implementation details have been omitted.

6-38 SQLJ Developer’s Guide and Reference

JPublisher and the Creation of Custom Java Classes

In this example, unlike in "Creating Object Types" on page 6-18, assume the Oracle
object ADDRESS has only the st r eet and zi p_code attributes.

package bar;

inport java. sql . SQ.Excepti on;

inport oracle.jdbc.driver.Qacl eCnnecti on;
inport oracle.jdbc.driver.Q acl eTypes;
inport oracl e. sql . Qust onbat um

inport oracl e. sql . Qust onbat unfFact ory;
inport oracl e.sql.Datum

i mport oracl e. sql . STRUCT;

inport oracl e.j pub. Mit abl e ruct;

public class Address inpl enents Qustonbatum Qustonbat unfactory

{
public static final Sring _SQ NAME = "SQOOIT. ADDRESS';

public static final int _SQ TYPEQE = O acl eTypes. STRULCT;

public static QustonbDat unfactory get Factory()
{ ...}

/* constructor */
publ i ¢ Address()
{ ...}

/* QustonDatumi nterface */
publ i ¢ Dat um t oDat un{ O acl eonnecti on ¢) throws SQ.Exception

{ ...}

/* Qust onbat unfactory interface */
publ i c QustonDatumcreate(Datumd, int sql Type) throws SQException

{ ...}

/* accessor nethods */
public Sring getSreet() throws SQException
{ ...}

public void setStreet(String street) throws SQException
{ ...}

public Sring getZ pCode() throws SQException
{ ...}

Objects and Collections 6-39

JPublisher and the Creation of Custom Java Classes

public voi d setZ pGode(Sring zi p_code) throws SQException
{ ...}

Custom Reference Class—AddressRef.java

Following is an example of the source code that JPublisher generates for a custom
reference class to be used for references to ADDRESS objects. Implementation details
have been omitted.

package bar;

inport java. sql . SQ.Excepti on;

inport oracle.jdbc.driver.Q acl eCnnecti on;
inport oracle.jdbc.driver.Q acl eTypes;
inport oracl e. sql . Qust onbat um

inport oracl e. sql . Qust onbat unfFact ory;
inport oracle.sql.Datu

inport oracl e.sql . REF,

i mport oracl e. sql . STRUCT;

public class AddressRef inpl ements Qustonbatum Qustonbat unfactory

{
public static final Sring _SQ BASETYPE = "SQOIT. ADDRESS';

public static final int _SQ TYPEQXDE = O acl eTypes. REF;

public static QustonbDat unfactory get Factory()
{ ...}

/* constructor */
publ i ¢ AddressRef ()

{ ...}

/* QustonDatumi nterface */
publ i ¢ Dat um t oDat un{ O acl eonnecti on ¢) throws SQException

{ ...}

/* Qust onbat unfactory interface */
publ ic QustonDatumcreate(Datumd, int sql Type) throws SQException

{ ...}
publ i c Address getVal ue() throws SQException
{ ...}

6-40 SQLJ Developer’s Guide and Reference

JPublisher and the Creation of Custom Java Classes

}

public voi d setVal ue(Address c) throws SQException
{ ...}

Custom Collection Class—ModuletbIT.java

Following is an example of the source code that JPublisher generates for a custom
collection class. Implementation details have been omitted.

inport java. sqgl . SQLExcepti on;

inport oracle.jdbc.driver.Qacl eCnnecti on;
inport oracle.jdbc.driver.Q acl eTypes;
inport oracl e. sql . Qust onbat um

inport oracl e. sql . Qust onbat unfFact ory;
inport oracl e.sql . Datum

inport oracl e. sql . ARRAY;,

inport oracle.sql.ArayDescriptor;

inport oracl e.jpub.runtime. Mit abl eArray;

public class Mdul etbl T i npl ements Qust onbatum Qust onbat unfact ory

{

public static final Sring _SQ@ NAME = "SCOIT. MDULETBL_T";
public static final int _SQ TYPEQCDE = O acl eTypes. ARRAY;
public static QustonbDat unfactory get Factory()

{ ...}

/* constructors */
publ i ¢ Mbdul et bl T()

{ ...}
publ i ¢ Mbdul et bl T(Mdul eT[] a)
{ ...}

/* QustonDatumi nterface */
publ i ¢ Dat um t oDat un{ O acl ennecti on ¢) throws SQ.Exception

{ ...}

/* Qust onbat unfactory interface */
publ i c QustonDatumcreate(Datumd, int sql Type) throws SQException

{ ...}

public Sring get BaseTypeNane() throws SQException

Objects and Collections 6-41

JPublisher and the Creation of Custom Java Classes

{ ...}

public int getBaseType() throws SQException
{ ...}

public ArrayDescriptor getDescriptor() throws SQException
{ ...}

/* array accessor nethods */
public Mdul eT[] get Array() throws SQException

{ ...}
public void set Array(Mdul eT[] a) throws SQException
{ ...}
public Mdul eT[] getArray(long index, int count) throws SQException
{ ...}
public void setArray(Mdul eT[] a, |ong index) throws SQException
{ ...}
publ i ¢ Mbdul eT get (bj ect BH enent (1 ong i ndex) throws SQException
{ ...}
public voi d set H enent (Mdul eT a, | ong index) throws SQException
{ ...}
}

Extending Classes Generated by JPublisher

You might want to enhance the functionality of a custom Java class generated by
JPublisher by adding methods and transient fields. You can accomplish this by
subclassing the JPublisher-generated class.

For example, suppose you want JPublisher to generate the class JAddr ess from the
SQL object type ADDRESS. You also want to write a class MyAddr ess to represent
ADDRESS objects and implement special functionality. The My Addr ess class must
extend JAddr ess.

Another way to enhance the functionality of a JPublisher-generated class is to
simply add methods to it. However, adding methods to the generated class is not
recommended if you anticipate running JPublisher at some future time to
regenerate the class. If you run JPublisher to regenerate a class that you have

6-42 SQLJ Developer’s Guide and Reference

JPublisher and the Creation of Custom Java Classes

modified in this way, you would have to save a copy and then manually merge
your changes back in.

JPublisher Functionality for Extending Generated Classes

As discussed in "Generate Custom Java Classes and Map Alternate Classes” on
page 6-33, the JPublisher syntax to generate JAddr ess but map to MyAddr ess is as
follows:

- sql =ADDRESS: JAddr ess: M/Addr ess

or, in an input file:

SQ ADDRESS CENERATE JAddress AS M/Addr ess

As a result of this, JPublisher will generate the REF class My Addr essRef (in
MyAddr essRef . j ava) rather than JAddr essRef .

In addition, JPublisher alters the code it generates to implement the following
functionality:

« The MyAddr ess class, instead of the JAddr ess class, is used to represent
attributes whose database type is ADDRESS.

=« The MyAddr ess class, instead of the JAddr ess class, is used to represent
method arguments and function results whose type is ADDRESS.

« The MyAddr ess factory, instead of the JAddr ess factory, is used to construct
Java objects whose database type is ADDRESS.

You would presumably use MyAddr ess similarly in any additional code that you
write.

At runtime, the Oracle JDBC driver will map any occurrences of ADDRESS data in
the database to My Addr ess instances, instead of to JAddr ess instances.

Requirements of Extended Classes

The class that you create (for example, My Addr ess. j ava) must have a
no-argument constructor. The easiest way to construct a properly initialized object
is to invoke the constructor of the superclass, either explicitly or implicitly.

As a result of subclassing the JPublisher-generated class, the subclass will inherit
definitions of the _SQL_ NAME field, which it requires, and the _SQL_TYPECODE
field.

In addition, one of the following will be true.

Objects and Collections 6-43

JPublisher and the Creation of Custom Java Classes

« Ifthe JPublisher-generated class implements the Cust omrDat umand
Cust onDat unfact or y interfaces, then the subclass will inherit this
implementation and the necessary t oDat unm(), and cr eat e() functionality of
the generated class. You must implement a get Fact or y() method that
returns an instance of your map class (such as a MyAddr ess object).

or:

« Ifthe JPublisher-generated class implements the SQLDat a interface, then the
subclass will inherit this implementation and the necessary r eadSQL() and
writeSQL() functionality of the generated class.

JPublisher-Generated Custom Object Class—JAddress.java

Continuing the example in the preceding sections, here is sample code for the
JPublisher-generated class (JAddr ess), implementing Cust onDat umand
Cust onDat unfact or y. Implementation details have been omitted.

inport java. sql . SQLExcepti on;

inport oracle.jdbc.driver.Qacl eCnnecti on;
inport oracle.jdbc.driver.Q acl eTypes;
inport oracl e. sql . Qust onbat um

inport oracl e. sql . Qust onbat unfFact ory;
inport oracl e.sql . Datum

i mport oracl e. sql . STRUCT;

inport oracle.jpub.runtime. Mitabl eXruct;

public class JAddress inpl enents Qust onbatum Qust onbat unfact ory

{
public static final Sring _SQ NAME = "SQOOIT. ADDRESS';

public static final int _SQ TYPEQXE = O acl eTypes. STRULCT;

public static QustonbDat unfactory get Factory()
{ ...}

/* constructor */
publ i ¢ JAddress()

{ ...}

/* QustonDatumi nterface */
publ i ¢ Dat um t oDat un{ O acl ennecti on ¢) throws SQException

{ ...}

/* Qust onbat unfactory interface */
publ ic QustonbDatumcreate(Datumd, int sql Type) throws SQException

6-44 SQLJ Developer’s Guide and Reference

JPublisher and the Creation of Custom Java Classes

{ ...}

/* shal | ow copy nethod: give object sane attributes as argunent */
voi d shal | owCopy(JAddress d) throws SQException

{ ...}

/* accessor nethods */
public Sring getSreet() throws SQException

{ ...}

public void setStreet(String street) throws SQException
{ ...}

public Sring getdty() throws SQException
{ ...}

public void setdty(Sring city) throns SQException
{ ...}

public Sring getSate() throws SQException
{ ...}

public void setState(Sring state) throws SQException
{ ...}

public java. math. B gDeci nal getZip() throws SQException
{ ...}

publ ic voi d setZip(java. nath. B gDeci nal zip) throws SQLException
{ ...}

JPublisher-Generated Alternate Reference Class—MyAddressRef.java

Continuing the example in the preceding sections, here is sample code for the
JPublisher-generated reference class (MyAddr essRef , as opposed to

JAddr essRef , because MyAddr ess is the class that ADDRESS objects map to). This
class also implements Cust onDat umand Cust onDat untact or y. Implementation

details have been omitted.

inport java. sql . SQLExcepti on;
inport oracle.jdbc.driver.Q acl eCnnecti on;

Objects and Collections 6-45

JPublisher and the Creation of Custom Java Classes

inport oracle.jdbc.driver.Qacl eTypes;
i nport oracl e. sql . Qust onbat um

import oracl e. sql . Qust onbat unfFact ory;
inport oracl e.sql.Datum

inport oracl e.sql . REF,

i mport oracl e. sql . STRUCT;

public class M/AddressRef inpl enents QustonDatum QustonDat unfact ory

{
public static final Sring _SQ BASETYPE = "SQOTT. ADDRESS';

public static final int _SQ TYPEQXDE = O acl eTypes. REF;

public static QustonbDat unfactory get Factory()
{ ...}

/* constructor */
publ i c M/Addr essRef ()

{ ...}

/* QustonDatumi nterface */
publ i ¢ Dat um t oDat un{ O acl eonnecti on ¢) throws SQ.Exception
{ ...}

/* Qust onbat unfactory interface */
publ i c QustonDatumcreate(Datumd, int sql Type) throws SQException

{ ...}

publ i ¢ M/Address get Val ue() throws SQ.Exception

{ ...}

public voi d setVal ue(M/Address c) throws SQException
{ ...}

}

Extended Custom Object Class—MyAddress.java

Continuing the example in the preceding sections, here is sample code for a

My Addr ess class that subclasses the JPublisher-generated JAddr ess class. The
comments in the code show what is inherited from JAddr ess. Implementation
details have been omitted.

inport java. sqgl . SQLExcepti on;
inport oracl e. sql . Qust onbat um
import oracl e. sql . Qust onbat unfFact ory;

6-46 SQLJ Developer’s Guide and Reference

JPublisher and the Creation of Custom Java Classes

inport oracl e.sql . Datum
inport oracl e. sql . STRUCT;
inport oracle.jpub.runtime. Mitabl eXruct;

public class M/Address extends JAddress

{

/* _SQ_NAME inherited from M/Address */
/* _SQ_TYPEQXE inherited fromMAddress */

static _nyAddressFactory = new M/Address();

public static QustonbDat unfactory get Factory()
{

}

return _nyAddressFact ory;

/* constructor */
publ i ¢ M/Addr ess()

{ super(); }

/* QustonDatumi nterface */
/* toDatun() inherited fromJAddress */

/* Qust onbat unfactory interface */
publ i c QustonDatumcreate(Datumd, int sql Type) throws SQException

{ ...}

/* accessor methods inherited fromJAddress */
/* Additional nethods go here. These additional nethods (not shown)

are the reason that JAddress was extended.
*/

Objects and Collections 6-47

Strongly Typed Objects and References in SQLJ Executable Statements

Strongly Typed Objects and References in SQLJ Executable Statements

Oracle SQLJ is flexible in how it allows you to use host expressions and iterators in
reading or writing object data through strongly typed objects or references.

For iterators, you can use custom object classes as iterator column types.
Alternatively, you can have iterator columns that correspond to individual object
attributes (similar to extent tables), using column types that appropriately map to
the attribute datatypes in the database.

For host expressions, you can use host variables of your custom object class type or
custom reference class type. Alternatively, you can use host variables that
correspond to object attributes, using variable types that appropriately map to the
attribute datatypes in the database.

The remainder of this section provides examples of how to manipulate Oracle
objects using custom object classes, custom object class attributes, and custom
reference classes for host variables and iterator columns in SQLJ executable
statements.

The first two examples operate at the object level:

1. Selecting Objects and Object References into Iterator Columns
2. Updating an Object

The third example operates at the scalar-attribute level:

3. Inserting an Object Created from Individual Object Attributes
The fourth example operates through a reference:

4. Updating an Object Reference

Refer back to the Oracle object types ADDRESS and PERSON in "Creating Object
Types" on page 6-18.

For a complete sample application that includes most of the code in the following
examples, see "Oracle Objects—ObjectDemo.sqlj" on page 12-27.

Note: Any discussion of custom reference classes applies only to
Cust onDat umimplementations.

Selecting Objects and Object References into Iterator Columns

This example uses a custom Java class and a custom reference class (Cust onDat um
implementations) as iterator column types.

6-48 SQLJ Developer’s Guide and Reference

Strongly Typed Objects and References in SQLJ Executable Statements

Presume the following definition of Oracle object type ADDRESS:

CREATE TYPE ACDRESS AS (BIECT

(street VARCHAR 40),
zip NUMBER);

And the following definition of the table EMPADDRS, which includes an ADDRESS
column and an ADDRESS reference column:

CREATE TABLE enpaddrs
(nane VARCHAR 60),

Once you use JPublisher or otherwise create a custom Java class Addr ess and
custom reference class Addr essRef corresponding to the Oracle object type
ADDRESS, you can use Addr ess and Addr essRef in a named iterator as follows:

Declaration:

#sgl iterator Enplter (Sring nane, Address hone, AddressRef |oc);

Executable code:

Enplter ecur;
#sgl ecur = { SHLECT nane, hone, | oc FROM enpaddrs };
vhile (ecur.next()) {
Address honmeAddr = ecur. hone();
/1 Print out the hone address.
Systemout.println ("Nane: " + ecur.nane() + "\n" +
"Home address: " + honeAddr.getSreet() +" " +
honeAddr . get Zi p()) ;
/1 Now updat e the | oc address zip code through the address ref erence.
AddressRef honeRef = ecur.loc();
Address | ocation = honeRef. get Val ue() ;
| ocati on. set Zi p(new Bi gDeci nal (98765)) ;
honeRef . set Val ue(l ocat i on) ;

}

The method call ecur . hone() extracts an Addr ess object from the hone column
of the iterator and assigns it to the local variable honeAddr (for efficiency). The
attributes of that object can then be accessed using standard Java dot syntax:

honeAddr . get Street ()

Objects and Collections 6-49

Strongly Typed Objects and References in SQLJ Executable Statements

Use the get Val ue() and set Val ue() methods, standard with any
JPublisher-generated custom reference class, to manipulate the location address (in
this case its zip code).

Note: The remaining examples in this section use the types and
tables defined in the SQL script in "Creating Object Types" on
page 6-18.

Updating an Object
This example declares and sets an input host variable of Java type Addr ess to
update an ADDRESS object in a column of the enpl oyees table. Both before and
after the update, the address is selected into an output host variable of type
Addr ess and printed for verification.

/1 Wdating an obj ect

static voi d updat e(j ect ()
{

Address addr;
Address new addr;
int enpnum= 1001;

try {
#sqgl {
SELECT of fice_addr
I NTO : addr

FRCM enpl oyees

WHERE enpnunber = : enpnum};
Systemout. println("Qurrent office address of enpl oyee 1001:");
pri nt Addr essDet ai | s(addr);

/* Now updat e the street of address */

Sring street =100 O acl e Parkway";
addr. set Street(street);

/* Put updat ed object back into the database */

try {

6-50 SQLJ Developer’s Guide and Reference

Strongly Typed Objects and References in SQLJ Executable Statements

#sqgl {
UPDATE enpl oyees
SET of fice_addr
WHERE enpnunber
Systemout. println
("Updat ed enpl oyee 1001 to new address at O acl e Parkway.");

: addr
:enpnum };

/* Sel ect new address to verify update */

try {
#sal {
SELECT of fice_addr
I NTO : new _addr

FRCM enpl oyees
WHERE enpnunber = : enpnum};

Systemout . println("New of fi ce address of enpl oyee 1001:");
pri nt AddressDet ai | s(new addr) ;

} catch (SQException exn) {
Systemout. println("Verification SELECT failed with "+exn); }

} catch (SQException exn) {
Systemout. print| n("UPDATE failed with "+exn); }

} catch (SQException exn) {
Systemout. printl n("SELECT failed with "+exn); }

}

Note the use of the set St r eet () accessor method of the Addr ess object.
Remember that JPublisher provides such accessor methods for all attributes in any
custom Java class that it produces.

This example uses the pri nt Addr essDet ai | s() utility. For the source code of
this method, see "Oracle Objects—ObjectDemo.sqlj" on page 12-27.

Inserting an Object Created from Individual Object Attributes

This example declares and sets input host variables corresponding to attributes of
PERSON and nested ADDRESS objects, then uses these values to insert a new
PERSON object into the per sons table in the database.

/1 Inserting an obj ect

Objects and Collections 6-51

Strongly Typed Objects and References in SQLJ Executable Statements

static void insert(ject()

{
Sring new hane = "NEWPERSON';
int new ssn = 987654;
Sring new street = "NEW STREET";
Sring newcity ="NEWATY";
Sring newstate = "NS';
Sring new zip ="NaP';
/*
* | nsert a new PERSON obj ect into the persons tabl e
*/
try {

#sqgl {
I NSERT | NTO per sons
VALUES (PERSON: new nane, :new ssn,
ACDRESS(: new street, :newcity, :newstate, :newzip))) };

Systemout. println("lnserted PERSON obj ect NEWPERSON ") ;

} catch (SQException exn) { Systemout.println("INSERT failed with "+exn); }

Updating an Object Reference

This example selects a PERSON reference from the per sons table and uses it to
update a PERSON reference in the enpl oyees table. It uses simple (i nt and

St ri ng) input host variables to check attribute value criteria. The newly updated
reference is then used in selecting the PERSON object to which it refers, so that
information can be output to the user to verify the change.

/1 Wdating a REF to an obj ect

static void updat eRef ()

{
int enpnum= 1001;
String new nmanager = " NEW PERSON';
Systemout . println("Wdating nanager REF.");
try {

6-52 SQLJ Developer’s Guide and Reference

Strongly Typed Objects and References in SQLJ Executable Statements

#sqgl {
UPDATE enpl oyees
SET nanager =
(SELECT REF(p) FROM persons p WHERE p. nane = : new_nanager)
WHERE enpnunber = : enpnum};

Systemout . println("Wdat ed nanager of enpl oyee 1001. Sel ecting back");

} catch (SQ@Exception exn) {
Systemout . printl n("UPDATE REF failed with "+exn); }

/* Sel ect manager back to verify the update */
Per son nanager ;

try {
#sqgl {
SH ECT der ef (manager)
I NTO : nanager
FRCM enpl oyees e
WHERE enpnunber = :enpnum} ;

Systemout. println("Qurrent nanager of "+enpnumt":");
pri nt PersonDet ai | s(nanager);

} catch (SQException exn) {
Systemout. printl n("SELECT REF failed with "+exn); }

Note: This example uses table alias syntax (p) as discussed
previously. Also, the REF syntax is required in selecting a reference
through the object to which it refers, and the DEREF syntax is
required in selecting an object through a reference. See the Oracle8i
SQL Reference for more information about table aliases, REF, and
DEREF.

Objects and Collections 6-53

Strongly Typed Collections in SQLJ Executable Statements

Strongly Typed Collections in SQLJ Executable Statements

As with strongly typed objects and references, Oracle SQLJ supports different
scenarios for reading and writing data through strongly typed collections, using
either iterators or host expressions.

From the perspective of a SQLJ developer, both categories of collections—VARRAY
and nested table—are treated essentially the same, but there are some differences in
implementation and performance.

Oracle SQLJ, and Oracle SQL in general, support syntax choices so that nested
tables can be accessed and manipulated either apart from or together with their
outer tables. In this section, manipulation of a nested table by itself will be referred
to as detail-level manipulation; manipulation of a nested table together with its outer
table will be referred to as master-level manipulation.

Most of this section, after a brief discussion of some syntax, focuses on examples of
manipulating nested tables, given that their use is somewhat more complicated
than that of VARRAYsS.

Refer back to the Oracle collection type MODULETBL_T and related tables and object
types defined in "Creating Collection Types" on page 6-20.

For complete nested table sample applications, including one that incorporates the
sample code below, see "Oracle Nested Tables—NestedDemo1l.sqlj and
NestedDemoz2.sqlj" on page 12-36.

Following the nested table discussion are some brief VARRAY examples. There are
also complete VARRAY sample applications, including one that incorporate this
code, in "Oracle VARRAYs—VarrayDemol.sqlj and VarrayDemo2.sqlj" on

page 12-45.

Notes:

« InOracle SQLJ, both VARRAY types and nested table types can
be retrieved only in their entirety. This is as opposed to Oracle
SQL, where nested tables can be selectively queried.

= Any discussion of custom collection classes applies only to
Cust onDat umimplementations.

Accessing Nested Tables—TABLE syntax and CURSOR syntax

Oracle SQLJ supports the use of nested iterators to access data in nested tables. Use
the CURSOR keyword in the outer SELECT statement to encapsulate the inner

6-54 SQLJ Developer’s Guide and Reference

Strongly Typed Collections in SQLJ Executable Statements

SELECT statement. This is shown in "Selecting Data from a Nested Table Using a
Nested Iterator" on page 6-59.

Oracle SQLJ also supports use of the TABLE keyword to manipulate the individual
rows of a nested table. This keyword informs Oracle that the column value returned
by a subquery is a nested table, as opposed to a scalar value. You must prefix the
TABLE keyword to a subquery that returns a single column value or an expression
that yields a nested table.

The following example shows the use of TABLE syntax:

UPDATE TABLE(SELECT a. nodul es FROM proj ects a WHERE a. i d=555) b
SET nodul e_owner =
(SELECT ref(p) FROM employees p WHERE p.ename="Smith)
WHERE b.module_name ="Zebra;

When you see TABLE used as it is here, realize that it is referring to a single nested
table that has been selected from a column of an outer table.

Note: This example uses table alias syntax (a for pr oj ect s, b for
the nested table, and p for enpl oyees) as discussed previously.
See the Oracle8i SQL Reference for more information about table
aliases.

Inserting a Row that Includes a Nested Table

This example shows an operation that manipulates the master level (outer table)
and detail level (nested tables) simultaneously and explicitly. This inserts a row in
the pr oj ect s table, where each row includes a nested table of type MODULETBL _T,
which contains rows of MODULE_T objects.

First, the scalar values are set (i d, name, st art _dat e, dur at i on), then the nested
table values are set. This involves an extra level of abstraction, because the nested
table elements are objects with multiple attributes. In setting the nested table values,
each attribute value must be set for each MODULE_T object in the nested table.
Finally, the owner values, initially set to nul | , are set in a separate statement.

I/ Insert Nested table details along with master details

public static void insertProject2(intid) throws Exception
{
System.out.printin('Inserting Project with Nested Table details..);

ty{
#sql{ INSERT INTO Projects(id,name,owner,start_date,duration, modules)

Objects and Collections 6-55

Strongly Typed Collections in SQLJ Executable Statements

VALLES (600, 'Ruby’, null, ’10-MAY-98', 300,
nodul et bl _t (nodul e_t (6001, *Setup ', null, ’'01-JAN-98', 100),
nodul e_t (6002, ' BenchMark’, null, '05-FEB-98',20) ,
nodul e _t (6003, ' Purchase’, null, '15-MAR98', 50),
nodul e t (6004, 'Install’, null, '15-MAR 98, 44),
nodul e _t (6005, ' Launch’, null,’12-NAY-98',34))) };
} catch (Exception e) {
Systemout.printin("Eror:insertProject2");
e.printSackTrace();

}

/1 Assign project owner to this project

try {
#sgl { UPDATE Projects pr
SET owner =(SELECT ref (pa) FROM partici pants pa WHERE pa. enpno = 7698)
WHERE pr. i d=600 };
} catch (Exception e) {
Systemout. println("Eror:insertProject2: update");
e.printSackTrace();

}
}

Selecting a Nested Table into a Host Expression

This example presents an operation that works directly at the detail level of the
nested table. Recall that Modul et bl T is a JPublisher-generated custom collection
class (Cust onDat umimplementation) for MODULETBL_T nested tables, Modul eT is
a JPublisher-generated custom object class for MODULE_T objects, and
MODULETBL_T nested tables contain MODULE_T objects.

A nested table of MODULE_T objects is selected from the nodul es column of the
pr oj ect s table into a Modul et bl T host variable.

Following that, the Modul et bl T variable (containing the nested table) is passed to
a method that accesses its elements through its get Arr ay() method, writing the
data to a Modul eT[] array. (All custom collection classes generated by JPublisher
include a get Array() method.) Then each element is copied from the Modul eT[]
array into a Modul eT object, and individual attributes are retrieved through
accessor methods (get Modul eNane() , for example) and then printed. (All
JPublisher-generated custom object classes include such accessor methods.)

static Mdul etbl T nynodul es=nul | ;

6-56 SQLJ Developer’s Guide and Reference

Strongly Typed Collections in SQLJ Executable Statements

public static void getMdul es2(int projld)
throws Exception
{

Systemout. println("D splay nodul es for project " + projld) ;

try {

#sgl {SELECT nodul es | NTO : nynodul es
FROM projects WHERE id=projld };

showAr ray(nynodul es) ;

} catch(Exception e) {
Systemout. println("Eror: get Mdul es2");
e.printSackTrace();

}

}

public static void showArray(Mdul etbl T a)
{
try {
if (a=null)
Systemout.printin("The array is null");
el se {
Systemout. println("printing Mdul eTabl e array object of size "
+a.length());
Modul eT[] nodul es = a. getArray();

for (int i=0;i<modul es.length; i++) {
Mbdul eT nodul e = modul es[i];
Systemout . println("nodul e "+modul e. get Mdul el d() +
", "+modul e. get Mbdul eNare() +
", "+nodul e. get Mbdul eSt art Dat e() +
", "+nodul e. get Mbdul eDuration());
}
}
}
catch(Exception e) {
Systemout. println("Show Array") ;
e.print St ackTrace();
}
}

Objects and Collections 6-57

Strongly Typed Collections in SQLJ Executable Statements

Manipulating a Nested Table Using TABLE Syntax

This example uses TABLE syntax to work at the detail level to access and update
nested table elements directly, based on master-level criteria.

The assi gnModul e() method selects a nested table of MODULE_T objects from the
MODULES column of the PROJECTS table, then updates MODULE_NAME for a
particular row of the nested table.

Similarly, the del et eUnownedModul es() method selects a nested table of
MODULE_T obijects, then deletes any unowned modules in the nested table (where
MODULE_OWNERis nul 1').

These methods use table alias syntax, as discussed previously—in this case, mfor
the nested table and p for the parti ci pant s table. See the Oracle8i SQL Reference
for more information about table aliases.

/* assi gnModul e

/1 Illustrates accessing the nested tabl e using the TABLE const ruct
/1 and updating the nested table row
*/

public static void assi gnMdul e(int projld, String nodul eNane,
String nodOaner) throws Exception

{
Systemout . printl n("Uddat e: Assi gn ' " +nodul eNane+"’ to ' "+ nodOaner+""");

try {
#sqgl {UPDATE TABLE SHLECT nodul es FROMprojects WERE id=:proj1d) m
SET m nodul e_owner =
(SELECT ref(p) FRQM participants p WHERE p. enane= : nodOnaner)
WHERE m nmodul e_nane = : nodul eNane };
} catch(Exception e) {
Systemout. println("Eror:insertMdul es");
e.printSackTrace();

}
}

/* del et eUnownedMbdul es
/] Denonstrates del etion of the Nested tabl e el enent
*/

public static void del et elnownedMbdul es(i nt proj | d)
throws Exception

{
Systemout . printl n("Del eti ng Unowned Mbdul es for Project " + projld);

try {

6-58 SQLJ Developer’s Guide and Reference

Strongly Typed Collections in SQLJ Executable Statements

#sql { DELETE TABLE(SELECT nodul es FROM proj ects WHERE id=:proj Id) m
WHERE mmodul e_owner 1S NULL };
} catch(Exception e) {
Systemout. printl n("Eror: del et elhownedMbdul es");
e.printSackTrace();

}
}

Selecting Data from a Nested Table Using a Nested Iterator

SQLJ supports the use of nested iterators as a way of accessing nested tables. This
requires CURSOR syntax, as used in the example below.

The code defines a named iterator class Modul el t er, then uses that class as the
type for a nodul es column in another named iterator class Pr oj | t er. Inside a
populated Pr oj | t er instance, each nodul es item is a nested table rendered as a
nested iterator.

The CURSOR syntax is part of the nested SELECT statement that populates the
nested iterators.

Once the data has been selected, it is output to the user through the iterator accessor
methods.

This example uses required table alias syntax, as discussed previously—in this case,
a for the pr oj ect s table and b for the nested table. See the Oracle8i SQL Reference
for more information about table aliases.

/1 The Nested Table is accessed using the Mdul el ter
/1 The Modulelter is defined as Narmed Iterator

#sgl public static iterator Mbdul elter(int nodul el d ,
String nodul eNane
String nodul eOaner) ;

/1 Get the Project Details using the Projlter defined as
// Naned Iterator. Notice the use of Mdul elter bel ow

#sgl public static iterator Projlter(int id,
Sring nare,
Sring owner,
Cate start_date,
Modul el ter nodul es) ;

Objects and Collections 6-59

Strongly Typed Collections in SQLJ Executable Statements

public static void listAlProjects() throws SQException
{

Systemout . println("Listing projects...");
/l Instantiate and initialize the iterators

Projlter projs = null;
Mddul elter nods = nul | ;
#sgl projs = {SELECT a.id,
a. nang,
i ni tcap(a. owner. enane) as "owner",
a.start _date,
QRSCR (
SH ECT b. nodul e i d AS "nodul el d",
b. nodul e_nane AS "nodul eNang",
i ni t cap(b. nodul e_owner. enane) AS "nodul eOaner "
FROM TABLE(a. nodul es) b) AS "nodul es”
FROM proj ects a };

/1 Dsplay Project Details

while (projs.next()) {
Systemout. printin("\n'" + projs.nane() +"' Project Id:"
+ projs.id() +" is owed by " +'" "+ projs.owner() +'"
+ " start on "
+ projs.start_date());

/1 Notice belowthe modules fromthe Projlter are assigned to the nodul e
/] iterator variable

nods = proj s. modul es() ;
Systemout. println ("Mdules in this Project are : ") ;

/1 Dsplay Mdule details

whi | e(mods. next ()) {
Systemout.println (" "+ nods. nodul el d() + " ""+
nods. nodul eNange() + "' owner is " +
nods. nodul eOaner () +"")
} /1 end of modul es
nods. cl ose();
} /1 end of projects

6-60 SQLJ Developer’s Guide and Reference

Strongly Typed Collections in SQLJ Executable Statements

proj s.close();

}

Selecting a VARRAY into a Host Expression

This section provides an example of selecting a VARRAY into a host expression.
Presume the following SQL definitions:

CREATE TYPE PHONE ARRAY | S VARRAY (10) CF var char 2(30)
/

/*** Qreate ADDRESS UDT ***/

CREATE TYPE ADDRESS AS CBJECT

(
street VARCHAR 60) ,
city VARCHAR 30),
state HAR 2),

zi p_code CHAR(5)
)
/
/*** (reate PERSON WDT containi ng an enbedded ADDRESS WDT ***/
CREATE TYPE PERSON AS GBJECT
(
nane VARCHAR(30),
ssh NUMBER
addr ADDRESS

)
/

CREATE TABLE enpl oyees

(enpnunber | NTEGER PR MARY KEY,
person_dat a REF person,
nanager REF person,
of fi ce_addr addr ess,
sal ary NUMBER,
phone_nuns phone_ar ray

)
/

And presume that JPublisher is used to create a custom collection class
PhoneAr r ay to map from the PHONE_ARRAY VARRAY type in the database.

The following method selects a row from this table, placing the data into a host
variable of the PhoneAr r ay type.

Objects and Collections 6-61

Strongly Typed Collections in SQLJ Executable Statements

private static void selectVarray() throws SQException

{
PhoneArray ph;
#sql {sel ect phone_nuns into :ph fromenpl oyees where enpnunber=2001};

Systemout . println(
"there are "+ph.length()+" phone nurmbers in the PhoneArray. They are:");

String [] pharr = ph.getAray();
for (int i=0;i<pharr.length;++)
Systemout. println(pharr[i]);

Inserting a Row that Includes a VARRAY
This section provides an example of inserting data from a host expression into a
VARRAY, using the same SQL definitions and custom collection class
(PhoneAr r ay) as in the previous section.

The following methods populate a PhoneAr r ay instance and use it as a host
variable, inserting its data into a VARRAY in the database.

/] creates a varray object of PhoneArray and inserts it into a newrow
private static void insertVarray() throws SQException

{
PhoneArray phForlnsert = consUPhoneArray();

/1 clean up fromprevious deno runs
#sgl {del ete fromenpl oyees wher e enpnunber=2001};

/1 insert the PhoneArray object
#sgl {insert into enpl oyees (enpnunber, phone_nuns)
val ues(2001, : phForlnsert)};

}

private static PhoneArray consUpPhoneArray()

{
String [] strarr = new Sring[3];

strarr[0] = "(510) 555.1111";
strarr[1] = "(617) 555.2222";
strarr[2] = "(650) 555.3333";

return new PhoneArray(strarr);

6-62 SQLJ Developer’s Guide and Reference

Serializing Java Objects

Serializing Java Objects

You may need to write and read instances of Java objects to or from the database. In
some cases, it can be advantageous to define a SQL object type that corresponds to
your Java class, and use the mechanisms of mapping Custom Java Classes
described previously. This permits full SQL queryability on your Java objects.

However, in some cases, you may want to store Java objects "as-is" and retrieve
them later. There are two ways to accomplish this:

= You can use a non-standard extension to the type map facility to map a
serializable Java class to database columns of type RAWor BLOB.

= You can use the Cust omDat umfacility to define a wrapper class
Seri al i zabl eDat umthat can be employed to store Java serializable objects in
RAWcolumns.

Serializing Java Classes to RAW and BLOB Columns

This section discusses the steps in serializing Java classes.

Defining a Type Map for Serializable Classes

If you want to store instances of Java classes directly in RAWor BLOB columns, then
the following non-standard requirements must be met. Assume that SAddr ess,
pack. SPer son, and pack. Manager . | nner SPM(where | nner SPMis an inner
class of Manager) are serializable Java classes. In other words, these classes
implementj ava. i o. Serial i zabl e.

= You must employ the classes only in statements that use explicit connection
context instances of a declared connection context type. Assume, for example,
that this type is called Ser Cont ext . For example:

SAddr ess a ol

pack. SPer son p=..;

pack. Manager . | nner SPM pm=. . .;

Ser Gontext ctx = new SerContext (url, user, pwd, f al se);
#sgl [etx] { ... :a... :QJTrp ... :INQJT pm... }

Note that in SQLJ statements the serializable Java objects can be transparently
read and written as if they were built-in types.

= The connection context type must have been declared using the W TH attribute
t ypeMap that specifies an associated class implementing a

Objects and Collections 6-63

Serializing Java Objects

java. util . PropertyResourceBundl e. In our example, Ser Cont ext
might have been declared as follows.

#sqgl public static context SerContext w th (typeMap="Ser Map");

« The type map resource must provide non-standard mappings from RAWor
BLOB columns to the serializable Java classes. This mapping is specified with
entries of the following form—depending on whether the Java class is mapped
to a RAWor a BLOB column.

oracl e-cl ass. g ava_cl ass_name>=JAVA CBIECT RAW
oracl e-cl ass. g ava_cl ass_nanme>=JAVA CBJECT BL(B

The keyword or acl e- cl ass marks this as an Oracle-specific extension. In
our example, the resource file Ser Map. pr operti es might contain the
following entries.

oracl e-cl ass. Addr ess=JAVA (BIECT RAW
oracl e-cl ass. pack. Per son=JAVA (BJECT BLCB
or acl e- cl ass. pack. Manager $| nner PM=JAVA CBIECT RAW

Although ". " separates package and classname, you must use the character "$"
to separate an inner class name.

Note that this Oracle-specific extension, as well as standard SQLDat a type map
entries, can be placed in the same type map resource.

Serializing in this manner works for all Oracle SQLJ runtime libraries, including
runtime.zip,runtimell. zi p,andrunti nel2. zi p. Thisis unlike the
SQLDat a support, which mandates r unt i mel12. zi p.

Limitations on Serializing Java Objects

You should be aware of the effect of serialization. If two objects, A and B, share the
same object, C, then upon serialization and subsequent deserialization of A and B,
each will point to its own clone of the object C, and sharing is broken.

In addition, note that for a given Java class, you can declare only one kind of
serialization: either into RAWor into BLOB. The SQLJ translator can check only that
the actual usage conforms to either RAWor BLOB.

RAWCcolumns are limited in size—you may experience runtime errors if the actual
size of the serialized Java object exceeds the size of the column.

Although column size is much less restrictive for BLOB columns, writing a
serialized Java object to a BLOB column in the database is—as of JDBC release

6-64 SQLJ Developer’s Guide and Reference

Serializing Java Objects

8.1.7—supported only in the OCI JDBC driver. On the other hand, retrieving a
serialized object from a BLOB column is supported by all Oracle JDBC drivers.

Finally, treating serialized Java objects this way is an Oracle-specific extension and
requires the Oracle SQLJ runtime as well as Oracle-specific profile customization.
Note that future versions of Oracle may support SQL types that directly
encapsulate Java serialized objects — these are described as JAVA_OBJECT SQL
types in JDBC 2.0. At that point, you can replace each of the BLOB and RAW
designations by the names of their corresponding JAVA_OBJECT SQL types, and
you can drop the or acl e- prefix on the entries.

Note: The implementation of this particular serialization
mechanism does not use JDBC type maps. The map (to BLOB or to
RAW is hardcoded in the Oracle profile customization at translate
time.

SerializableDatum - A CustomDatum Implementation

"Additional Uses for CustomDatum Implementations” on page 6-16 includes
examples of situations where you might want to define a custom Java class that
maps to some or acl e. sql . * type other than the or acl e. sql . STRUCT,
oracl e. sql . REF, ororacl e. sgl . ARRAY type.

An example of such a situation is if you want to serialize and deserialize Java
objects into and out of RAWfields in the database, with a custom Java class that
maps to the or acl e. sqgl . RAWtype.

This section presents an example of such an application, creating a class,

Seri al i zabl eDat um that implements the Cust omDat uminterface and follows
the general form of custom Java classes, as described in "Custom Java Classes" on
page 6-6.

The example starts with a step-by-step approach to the development of
Seri al i zabl eDat um followed by the complete sample code.

Note: This application uses classes from thej ava. i o,j ava. sql,
oracl e. sgl ,and oracl e. jdbc. dri ver packages. The import
statements are not shown here.

1. Begin with a skeleton of the class.

public class Serializabl eDat uminpl enents Qust onbat um

Objects and Collections 6-65

Serializing Java Objects

{
/1 <dient nethods for constructing and accessi ng the Java obj ect>
publ i ¢ Dat umt oDat un{Qracl eConnection c) throws SQException
{
/1 <Inplenentation of tolatunf)>
}
public static QustonbDatunfactory getFact ory()
{
return FACTCRY:
}
private static final Qustonbatunfactory FACTCRY =
/'l <Inplenentation of a Qustontatunfactory for Serializabl eDat un»
/1 <@nstruction of Serializabl eDatum fromoracl e. sql . RAW
public static final int _SQ TYPEOQXE = O acl eTypes. RAW
}

Seri al i zabl eDat umdoes not implement the Cust onDat unfact or y interface,
but its get Fact or y() method returns a static member that implements this
interface.

The _SQL_TYPECODE is set to Or acl eTypes. RAWbecause this is the datatype
being read from and written to the database. The SQLJ translator needs this
typecode information in performing online type-checking to verify compatibility
between the user-defined Java type and the SQL type in the database.

2. Define client methods that perform the following:
« CreateaSeri al i zabl eDat umobject.
« Populate a Seri al i zabl eDat umobject.
» Retrieve data from a Ser i al i zabl eDat umobject.

/1 Qient nethods for constructing and accessing a Serializabl eDatum

private (bject mdata;
public Serializabl ebat unf)

{

mdata = nul | ;

public void setDat a((hj ect data)
{

6-66 SQLJ Developer’s Guide and Reference

Serializing Java Objects

mdata = dat a;

}
public bject getData()
{
return mdat a;
}

3. Implementat oDat un() method that serializes data from a
Seri al i zabl eDat umobject to an or acl e. sql . RAWobject. The
implementation of t oDat um() must return a serialized representation of the
object in the m_dat a field as an or acl e. sql . RAWinstance.

/1 Inplenmentation of toDatuny)

try {
Byt eArrayQut put S ream os = new Byt eArrayQut put Strean();

(hj ect Qut put S ream oos = new (bj ect Qut put S rean{ 0s) ;
0os. witeChj ect (mdata);
0os. cl ose();
return new RAWNos.toByteArray());
} catch (Exception e) {
t hrow new SQException("Serial i zabl eDatumtoDatum "+e.toSring()); }

4. Implement data conversion from an or acl e. sql . RAWobbject to a
Seri al i zabl eDat umobject. This step deserializes the data.

/1 Gonstructing Serializabl eDat umfromoracl e. sqgl . RAW

private Serializabl eDat um{RAWraw) throws SQException

{

try {
I nput Stream ranwSt ream = new Byt eArrayl nput S reanfraw get Byt es());

(oj ect Input Streami s = new Chj ect | nput S rean{raws rean);
mdata = is.readject();
is.close();
} catch (Exception e) {
t hrow new SQ Excepti on("Serializabl eDatumcreate: "+e.toString()); }

}

5. Implement a Cust onDat unfact ory. In this case, it is implemented as an
anonymous class.

/1 Inplementation of a Qustonbatunfactory for Serializabl eDat um

new Qust ontat unfact or y()

Objects and Collections 6-67

Serializing Java Objects

public QustonbDatumcreate(Datumd, int sqgl Gode) throws SQException
{

if (sqgl Gode '= _SQ_TYPEQTE)

{

}
return (d==null) ? null : new Seri alizabl eDat un{(RAWY);

t hr ow new SQLException("Seri al i zabl eDatum invalid SQ type "+sql Code);

SerializableDatum in SQLJ Applications

Given the Seri al i zabl eDat umclass created in the preceding section, this section
shows how to use an instance of it in a SQLJ application, both as a host variable and
as an iterator column.

Presume the following table definition:
CREATE TABLE PERSONDATA (NAME VARCHARZ(20) NOT NULL, | NFO RAW2000));

SerializableDatum as Host Variable

Following is an example of using a Seri al i zabl eDat uminstance as a host
variable.

Serial i zabl eDat um pi nfo = new Seri al i zabl eDat un() ;
pinfo.setData (
new (hj ect[] {"Sone objects", new Integer(51), new Doubl e(1234.27) });
Sring pnane = "M LLER';
#sqgl { INSERT | NTO per sondat a VALUES(: pnane, :pinfo) };

SerializableDatum in Iterator Column
Here is an example of using Ser i al i zabl eDat umas a named iterator column.

Declaration:

#sgl iterator Personlter (SerializableDatuminfo, Sring nane);

Executable code:

6-68 SQLJ Developer’s Guide and Reference

Serializing Java Objects

Per sonlter pcur;
#sgl pecur = { SHLECT * FROM persondata WHERE info |S NOI NULL };
vhi l e (pcur. next())

{
}

pecur. cl ose() ;

Systemout. println("Nane: " + pcur.name() + " Info:" + pcur.info());

SerializableDatum (Complete Class)

This section shows you the entire Ser i al i zabl eDat umclass previously
developed in step-by-step fashion.

inport java.io.*;

inport java.sql.*;

inport oracle.sql.*;

inport oracle.jdbc.driver.*;

public class Serializabl eDat uminpl enents Qust onbat um
{

/1 Qient nethods for constructing and accessing a Serializabl eDatum

private Chbject mdata;
public Serializabl ebat unf)

{ mdata = nul | ;

Lubl ic void setData((ject data)
{ mdata = dat g;

Lubl ic (hject getData()

{ return mdat a;

}

/1 Inplenentation of toDatun)

publ i ¢ Dat umt oDat un{Oracl eConnection c) throws SQException
{

try {
Byt eArrayQut put Stream os = new Byt eArrayQut put Streant) ;

(oj ect Qut put Stream oos = new (bj ect Qut put S r ean{ 0s) ;

Objects and Collections 6-69

Serializing Java Objects

00s. witeCj ect(mdata);
00s. cl ose();
return new RAWos.t oByteArray());
} catch (Exception e) {
t hrow new SQ Excepti on("Serial i zabl eDatumtoDatum "+e.toXring()); }

}
public static QustonbDatunfactory getFact ory()
{
return FACTCRY;
}

/1 Inplenentation of a Qustonbatuntactory for Serializabl eDat um
private static final Qustonbatunfactory FACTCRY =

new Qust ontat unfact or y()

{
public QustonDat umcreate(Datumd, int sql Gode) throws SQException
{
if (sql Gode !'= _SQ_ TYPEQE)
{
t hr ow new SQExcept i on(
"SerializableDatum invalid SQ type "+sgl Gode);
}
return (d==null) ? null : new Serializabl eDat un{(RAWd);
}
b

/] Qonstructing Serializabl eDatumfromoracle. sql . RAW

private Serializabl eDat um{RAWraw) throws SQException
{

try {
I nput Stream r anSt ream = new Byt eArrayl nput S reanfraw get Bytes());

(oj ect Input Sreami s = new Chj ect | nput S rean{rans rean);
mdata = is.readject();
is.close();
} catch (Exception e) {
t hrow new SQ Exception("Serializabl eDatumcreate: "+e.toString()); }
}

public static final int _SQ TYPEQXE = O acl eTypes. RAW

6-70 SQLJ Developer’s Guide and Reference

Weakly Typed Objects, References, and Collections

Weakly Typed Objects, References, and Collections

Weakly typed objects, references, and collections are supported by SQLJ. Their use
is not generally recommended, and there are some specific restrictions, but in some
circumstances they can be useful. For example, you might have generic code that
can use "any STRUCT" or "any REF" (although if this uses dynamic SQL it would
require coding in JDBC, instead of SQLJ).

Support for Weakly Typed Objects, References, and Collections

In using Oracle objects, references, or collections in a SQLJ application, you have the
option of using generic and weakly typed j ava. sql oror acl e. sql instances
instead of the strongly typed custom object, reference, and collection classes that
implement the Cust onDat uminterface or the strongly typed custom object classes
that implement the SQLDat a interface. (Note that if you use SQLDat a
implementations for your custom object classes, you will have no choice but to use
weakly typed custom reference instances.)

The following weak types can be used for iterator columns or host expressions in
Oracle SQLJ:

« java.sql.Struct ororacle. sql.STRUCT for objects
« java.sql.Ref ororacl e. sql . REF for object references
« java.sql.Arrayororacle. sgl . ARRAY for collections
In host expressions, they are supported as follows:

« asinput host expressions

« asoutput host expressions in an INTO-list

Using these weak types is not generally recommended, however, as you would lose
all the advantages of the strongly typed paradigm that SQLJ offers.

Each attribute in a STRUCT object or each element in an ARRAY object is stored in an
or acl e. sqgl . Dat umobiject, with the underlying data being in the form of the
appropriate or acl e. sql . * type (such as or acl e. sql . NUVBER or

oracl e. sgl . CHAR). Attributes in a STRUCT object are nameless.

Because of the generic nature of the STRUCT and ARRAY classes, SQLJ cannot
perform type checking where objects or collections are written to or read from
instances of these classes.

It is generally recommended that you use custom Java classes for objects, references,
and collections, preferably classes generated by JPublisher.

Objects and Collections 6-71

Weakly Typed Objects, References, and Collections

Restrictions on Weakly Typed Objects, References, and Collections

A weakly typed object (St r uct or STRUCT instance), reference (Ref or REF
instance), or collection (Ar r ay or ARRAY instance) cannot be used in host
expressions in the following circumstances:

« | Nparameter if null
« QOUT or | NOUT parameter in a stored procedure or function call
« QUT parameter in a stored function result expression

They cannot be used in these ways because there is no way to know the underlying
SQL type name (such as Per son), which is required by the Oracle JDBC driver to
materialize an instance of a user-defined type in Java.

6-72 SQLJ Developer’s Guide and Reference

v

Advanced Language Features

This chapter discusses advanced SQLJ language features for use in coding your
application. For more basic topics, see Chapter 3, "Basic Language Features".

The following topics are discussed:

Connection Contexts

Execution Contexts

Multithreading in SQLJ

Iterator Class Implementation and Advanced Functionality
Advanced Transaction Control

SQLJ and JDBC Interoperability

Advanced Language Features 7-1

Connection Contexts

Connection Contexts

SQLJ supports the concept of connection contexts, allowing strongly typed
connections for use with different sets of SQL entities. You can think of a connection
context as being associated with a particular set of SQL entities such as tables,
views, and stored procedures. SQLJ lets you declare additional connection context
classes so that you can use each class for connections that use a particular set of SQL
entities. Different instances of a single connection context class will typically not use
the same physical entities or connect to the same schema, but will at least use sets of
entities with the same names and datatypes.

Note: For an overview of connection basics, focusing on situations
where you are using just a single set of SQL entities and a single
connection context class, see "Connection Considerations" on

page 4-8.

Connection Context Concepts

If your application uses different sets of SQL entities, then you will typically want to
declare and use one or more additional connection context classes, as discussed in
"Overview of SQLJ Declarations" on page 3-2. Each connection context class can be
used for a particular set of interrelated SQL entities, meaning that all the
connections you define using a particular connection context class will use tables,
views, stored procedures, and so on, that have the same names and use the same
datatypes.

An example of a set of SQL entities is the set of tables and stored procedures used
by the Human Resources department. Perhaps they use tables EMPLOYEES and
DEPARTMENTS and stored procedures CHANGE _DEPT and UPDATE_HEALTH_PLAN.
Another set of SQL entities might be the set of tables and procedures used by the
Payroll department, perhaps consisting of the table EMPS (another table of
employees, but different than the one used by HR) and the stored procedures

G VE_RAI SE and CHANGE_W THHOLDI NG

The advantage in tailoring connection context classes to sets of SQL entities is in the
degree of online semantics-checking that this allows. Online checking verifies that
all the SQL entities appearing in SQLJ statements that use a given connection
context class match SQL entities found in the exemplar schema used during
translation. An exemplar schema is a database account that SQLJ connects to for
online checking of all the SQLJ statements that use a particular connection context
class. You provide exemplar schemas to the translator through the SQLJ
command-line - user, - passwor d, and - ur | options. (See "Connection Options"

7-2 SQLJ Developer's Guide and Reference

Connection Contexts

on page 8-30 for information about these options.) An exemplar schema might or
might not be the same account your application will use at runtime.

If you have SQLJ statements that use a broad and perhaps unrelated group of SQL
entities, but you use only a single connection context class for these statements, then
the exemplar schema you provide must be very general. It must contain all the
tables, views, and stored procedures used throughout all the statements.
Alternatively, if all the SQLJ statements using a given connection context class use a
tight, presumably interrelated, set of SQL entities, then you can provide a more
specific exemplar schema that allows more thorough and meaningful
semantics-checking.

Notes:

= Be aware that a connection context class declaration does not
define a set of SQL entities to be used with the declared
connection context class, and it is permissible to use the same
connection context class for connections that use disparate and
unrelated sets of entities. How you use your connection context
classes is purely at your discretion. All that limits the SQL
entities you can use with a particular connection context class
are the set of entities available in the exemplar schema (if you
use online semantics-checking during translation) and the set
of entities available in the schema you connect to at runtime,
using instances of the connection context class.

« If you use qualified SQL names in your application—names
such as SCOTT. EMP, which specifies the schema where the
entity resides—then the exemplar schema (if you use online
checking) and runtime schema must have permission to access
resources by these fully qualified names.

« Itis possible to use a single connection context class, even for
connections to databases from different vendors, as long as
each schema you connect to has entities that are accessible by
the same names and that use compatible datatypes.

Connection Context Logistics

Declaring a connection context class results in the SQLJ translator defining a class
for you in the translator-generated code. In addition to any connection context
classes that you declare, there is always the default connection context class:

Advanced Language Features 7-3

Connection Contexts

sqlj.runtine.ref. Defaul t Cont ext

When you construct a connection context instance, you specify a particular schema
(user name, password, and URL) and a particular session and transaction in which
SQL operations will execute. You typically accomplish this by specifying a user
name, password, and database URL as input to the constructor of the connection
context class. The connection context instance manages the set of SQL operations
performed during the session.

In each SQLJ statement, you can specify a connection context instance to use, as
discussed in "Specifying a Connection Context Instance for a SQLJ Clause" on
page 7-6.

The following example shows basic declaration and use of a connection context
class, MyCont ext , to connect to two different schemas. For typical usage, assume
these schemas include a set of SQL entities with common names and datatypes.

Declaration:

#sgl context M/Context;

Executable code:

M/Cont ext nttx1 = new M/Cont ext

("jdbc: oracl e: t hi n@ocal host : 1521: CRAL", "scott", "tiger", false);
MContext nttx2 = new MyQont ext

("j dbc: oracl e: t hi n@ocal host: 1521: CRAL", "brian", "nypasswd", false);

Note that connection context class constructors specify a boolean auto-commit
parameter (this is further discussed in "More About Declaring and Using a
Connection Context Class" on page 7-4).

In addition, note that you can connect to the same schema with different connection
context instances. In the example above, both ntt x1 and nct x2 could specify
scott/ti ger if desired. During runtime, however, one connection context
instance would not see changes to the database made from the other until the
changes are committed. The only exception to this would be if both connection
context instances were created from the same underlying JDBC connection instance.
(One of the constructors of any connection context class takes a JDBC connection
instance as input.)

More About Declaring and Using a Connection Context Class

This section gives a detailed example of how to declare a connection context class,
then define a database connection using an instance of the class.

7-4 SQLJ Developer's Guide and Reference

Connection Contexts

A connection context class has constructors for opening a connection to a database
schema, given any of the following (as with the Def aul t Cont ext class):

« URL (String),user name (St ri ng), password (St ri ng), auto-commit
(bool ean)

« URL(String),java.util.Properti es object, auto-commit (bool ean)

« URL (St ri ng fully specifying connection and including user name and
password), auto-commit setting (bool ean)

= JDBC connection object (Connect i on or Or acl eConnecti on)

= SQLJ connection context object

Notes:

« When using the constructor that takes a JDBC connection
object, do not initialize the connection context instance with a
null JDBC connection.

= The auto-commit setting determines whether SQL operations
are automatically committed. For more information, see "Basic
Transaction Control" on page 4-28.

Declaring the Class
The following declaration creates a connection context class:

#sgl context QderEntryCGx <inplenents clause> <w th cl ause>,

This results in the SQLJ translator generating a class that implements the
sqlj.runtinme. Connecti onCont ext interface and extends some base class
(probably an abstract class) that also implements the Connect i onCont ext
interface. This base class would be a feature of the particular SQLJ implementation
you are using.

The i npl ement s clause and wi t h clause are optional, specifying additional
interfaces to implement and variables to define and initialize, respectively.
"Declaration IMPLEMENTS Clause" on page 3-5 and "Declaration WITH Clause" on
page 3-6 discuss these.

The following is an example of what the SQLJ translator generates (with method
implementations omitted):

Advanced Language Features 7-5

Connection Contexts

class OderEntryGx inplenents sqlj.runtine. Gonnecti onCont ext
extends ...

{

public OderEntryGx(String url, Properties info, bool ean aut ocommt)
throws SQException;
public OderEntryGx(String url, bool ean aut ocommt) throws SQException;
public OderEntryGx(String url, String user, String password,
bool ean aut ocommt) throws SQ Exception;
public O der Ent ryG x(Gonnecti on conn) throws SQException;
public O der Ent ryC x(Gonnect i onGontext other) throws SQException;

public static OderEntryCx getDefaul t Gontext();
public static void setDefaul tGontext (G derEntryGx ctx);

Creating a Connection Context Instance
Continuing the preceding example, instantiate the Or der Ent r yCt x class with the
following syntax:

O der EntryQG x nyQ der Conn = new O der Ent ryQt x
(url, usernane, passwvord, autocommit);

For example:
O der EntryQ x nyQ der Conn = new O der Ent ryQ x

("j dbc:oracl e:thin: @ocal host: 1521:orcl", "scott", "tiger", true);

This is accomplished in the same way as instantiating the Def aul t Cont ext class.
All connection context classes, including Def aul t Cont ext , have the same
constructor signatures.

Note: You typically must register your JDBC driver prior to
constructing a connection context instance. See "Driver Selection
and Registration for Runtime" on page 4-7.

Specifying a Connection Context Instance for a SQLJ Clause
Recall that the basic SQLJ statement syntax is as follows:

#sgl <[<conn><, ><exec>]> { SQ operation };

7-6 SQLJ Developer's Guide and Reference

Connection Contexts

Specify the connection context instance inside square brackets following the #sql
token. For example, in the following SQLJ statement, the connection context
instance is myOr der Conn from the previous example:

#sgl [nyQrder@nn] { UPDATE TAB2 SET QO.1 = :w WERE (v < GO.2 };

In this way, you can specify an instance of either the Def aul t Cont ext class or any
declared connection context class.

Note: Your default connection must be an instance of the
Def aul t Cont ext class, not of a declared connection context class.

Closing a Connection Context Instance

It is advisable to close all connection context instances when you are done. Each
connection context class includes a cl ose() method, as discussed for the
Def aul t Cont ext class in "Closing Connections" on page 4-12.

In closing a connection context instance that shares the underlying connection with
another connection instance, you might want to keep the underlying connection
open. See "Closing Shared Connections" on page 7-40.

Example of Multiple Connection Contexts

The following is an example of a SQLJ application using multiple connection
contexts. It implicitly uses an instance of the Def aul t Cont ext class for one set of
SQL entities, and uses an instance of the declared connection context class

Dept Cont ext for another set of SQL entities.

This example uses the static Or acl e. connect () method to establish a default
connection, then constructs an additional connection by using the static

Oracl e. get Connecti on() method to pass another Def aul t Cont ext instance
to the Dept Cont ext constructor. As previously mentioned, this is just one of
several ways you can construct a SQLJ connection context instance.

inport java. sql . SQLExcepti on;
inport oracle.sqlj.runtime. Oacle;

/1 declare a new context class for obtai ning departnents
#sgl context Dept Context;

#sqgl iterator Enpl oyees (Sring enane, int deptno);

Advanced Language Features 7-7

Connection Contexts

class Ml ti SchemaDeno
{
public static void main(Sring[] args) throws SQException
{
/* if you' re using a non-Qacle JDBC Driver, add a call here to
DriverManager.regi sterDriver() to register your Driver
*/

/] set the default connection to the LR, user, and password
/1 specified in your connect.properties file
Q acl e. connect (Ml ti SchenabDeno. cl ass, "connect. properties");

/] create a context for querying departnent info using
/1 a second connection
Dept Cont ext dept @ x =
new Dept Cont ext (O acl e. get Gonnect i on(Mul t i Schemaleno. cl ass,
"connect . properties"));

new Ml t i Schemaleno() . pri nt Enpl oyees(dept @ x) ;
dept @ x. cl ose();

}

/1 perforns a join on deptno field of two tables accessed from
/1 different connections.
voi d print Enpl oyees(Dept Gontext dept @ x) throws SQ Exception
{
/] obtain the enpl oyees fromthe default context
Enpl oyees enps;
#sqgl enps = { SELECT enane, deptno FROMenp };

/1 for each enpl oyee, obtain the departnent nane
/1 using the dept table connection context
vhile (enps.next()) {
Sring dnane;
int deptno = enps. dept no();
#sgl [deptCx] {
SHLECT dnane | NTO : dnane FROM dept WHERE dept no = : dept no
b
Systemout. println("enpl oyee: " +enps. enane() +
", departnent: " + dnane);

enps. cl ose();

7-8 SQLJ Developer's Guide and Reference

Connection Contexts

Implementation and Functionality of Connection Context Classes

This section discusses how SQLJ implements connection context classes, including
the Def aul t Cont ext class, and what noteworthy methods they contain.

As mentioned earlier, the Def aul t Cont ext class and all generated connection
context classes implement the Connect i onCont ext interface.

Note: Subclassing connection context classes is not permitted in
the SQLJ specification and is not supported by Oracle SQLJ.

ConnectionContext Interface

Each connection context class implements the
sqlj.runtime. Connecti onCont ext interface.

Basic methods specified by this interface include the following:

« close(bool ean CLOSE_CONNECTI ON/ KEEP_CONNECTI ON) —Releases all
resources used in maintaining this connection and closes any open connected
profiles. It might or might not close the underlying JDBC connection,
depending on whether CLOSE_CONNECT! ON or KEEP_CONNECTI ONis
specified. These are static boolean constants of the Connect i onCont ext
interface.

For further discussion, see "Closing Shared Connections" on page 7-40.

=« get Connecti on()—Returns the underlying JDBC connection object for this
connection context instance.

« get Executi onCont ext () —Returns the default Execut i onCont ext
instance for this connection context instance. For more information, see
"Execution Contexts" on page 7-15.

Additional Connection Context Class Methods
In addition to the methods specified and defined in the Connect i onCont ext
interface, each connection context class defines the following methods:

« get Def aul t Cont ext () —This is a static method that returns the default
connection context instance for a given connection context class.

« setDefaul t Context(Your_Ctx_C ass conn_ctx_instance)—Thisisa
static method that defines the default context instance for a given connection
context class.

Advanced Language Features 7-9

Connection Contexts

Although it is true that you can use an instance of only the Def aul t Cont ext class
as your default connection, it might still be useful to designate an instance of a
declared connection context class as the default context for that class, using the

set Def aul t Cont ext () method. Then you could conveniently retrieve it using
the get Def aul t Cont ext () method of the particular class. This would allow you,
for example, to specify a connection context instance for a SQLJ executable
statement as follows.

Declaration:

#sgl context M/Context;

Executable code:

M/Cont ext nyctx1l = new M/Context (url, user, passvord, auto-conmit);
M/Cont ext . set Def aul t Cont ext (nyct x1) ;

#sgl [MCont ext.get Defaul tontext()] { S@ operations };

Use of the IMPLEMENTS Clause in Connection Context Declarations

There might be situations where it is useful to implement an interface in your
connection context declarations. For general information and syntax, see
"Declaration IMPLEMENTS Clause" on page 3-5.

You might, for example, want to define an interface that exposes just a subset of the
functionality of a connection context class. More specifically, you might want the
capability of a class that has get Connect i on() functionality, but does not have
other functionality of a connection context class.

You can create an interface called HasConnect i on, for example, that specifies a
get Connecti on() method, but does not specify other methods found in a
connection context class. You can then declare a connection context class but expose
only the get Connect i on() functionality by assigning a connection context
instance to a variable of the type HasConnect i on, instead of to a variable that has
the type of your declared connection context class.

The declaration will be as follows (presume HasConnect i on is in package
nypackage):
#sgl public context M/Gontext inpl enents nypackage. HasConnecti on;

7-10 SQLJ Developer’s Guide and Reference

Connection Contexts

Then you can instantiate a connection instance as follows:

Has@nnecti on nyGonn = new M/Gontext (url, username, password, autoconmit);

For example:

Has@nnecti on nyGonn = new M/Gont ext
("j dbc: oracl e: thin: @ocal host: 1521: orcl ", "scott", "tiger", true);

Semantics-Checking of Your Connection Context Usage

A significant feature of SQLIJ is strong typing of connections, with each connection
context class typically used for operations on a particular set of interrelated SQL
entities. This doesn’t mean that all the connection entities instances of a single class
use the same physical entities, but that they use entities that have the same
properties, such as names and privileges associated with tables and views,
datatypes of their rows, and names and definitions of stored procedures. This
strong typing allows SQLJ semantics-checking to verify during translation that you
are using your SQL operations correctly, with respect to your database connections.

To use online semantics-checking during translation, provide a sample schema (that
includes an appropriate set of SQL entities) for each connection context class. These
sample schemas are referred to as exemplar schemas. Provide exemplar schemas
through the SQLJ - user, - passwor d, and - ur | options. (For information about
these SQLJ options, see "Connection Options" on page 8-30.)

During semantics-checking, the translator connects to the specified exemplar
schema for a particular connection context class and accomplishes the following:

« Itexamines each SQLJ statement in your code that specifies an instance of the
connection context class and checks its SQL operations (such as what tables you
access and what stored procedures you use).

« It verifies that entities in the SQL operations match the set of entities existing in
the exemplar schema.

It is the responsibility of the application developer to pick an exemplar schema that
represents the runtime schema in appropriate ways. For example, it must have
tables, views, stored functions, and stored procedures with names and datatypes
that match what are used in your SQL operations, and with privileges set
appropriately.

If no appropriate exemplar schema is available during translation for one of your
connection context classes, then you need not specify SQLJ translator options

Advanced Language Features 7-11

Connection Contexts

(- user, - passwor d, - ur |) for that particular connection context class. In that case,
SQLJ statements specifying connection objects of that connection context class are
semantically checked only to the extent possible.

Note: Remember that the exemplar schema you specify in your
translator option settings does not specify the schema to be used at
runtime. The exemplar schema furnishes the translator only with a
set of SQL entities to compare against the entities you use in your
SQLJ executable statements.

DataSource Support

The JDBC 2.0 extended API specifies the use of Dat aSour ces and JNDI as a
portable alternative to the current Dri ver Manager mechanism for obtaining JDBC
connections. It permits database connections to be established through a JNDI name
lookup. This name is bound to a particular database and schema prior to program
runtime through a j avax. sql . Dat aSour ce object, typically installed through a
GUI JavaBeans deployment tool. The name can be bound to different physical
connections without any source code changes simply by rebinding the name in the
directory service.

SQLJ uses the same mechanism to create connection context instances in a flexible
and portable way. Data sources can also be implemented using a connection pool or
distributed transaction service, as defined by the JDBC 2.0 extended API.

Associating A Connection Context With A DataSource

In SQLJ it is natural to associate a connection context class with a logical schema, in
much the same way that a Dat aSour ce name serves as a symbolic name for a
JDBC connection. Combine both concepts by adding the Dat aSour ce name to the
connection context declaration.

#sgl context EnpCx w th (dataSource="jdbc/ EnpDB');
Any connection context that you declare with a dat aSour ce property, such as
EnpCt x above, provides the following new constructors:

=« public EnmpCtx()—Looks up the DataSource for "j dbc/ EnpDB" and then
calls the get Connect i on() method on it to obtain a connection.

« public EmpCtx(String user, String password)—Looks up the
Dat aSour ce for "j dbc/ EnpDB" and then calls the
get Connecti on(user, passwor d) on it to obtain a connection.

7-12 SQLJ Developer’s Guide and Reference

Connection Contexts

« public EnpCtx(ConnectionContext ctx)—Delegatesto ctx to obtaina
connection.

Any connection context declared with a dat aSour ce property, such as EnpCt x
above, will omit the following Dr i ver Manager -based constructors:

« public EnpCtx(Connection conn)

« public EnpCtx(String url, String user, String password,
bool ean aut oComi t)

« public EmpCtx(String url, bool ean autoComit)

« public EmpCtx(String url, java.util.Properties info,
bool ean aut oComi t)

« public EmpCtx(String url, bool ean autoComit)

Auto Commit Mode for DataSource Connections

Unlike the Dr i ver Manager -based constructors they replace, the new
Dat aSour ce-based constructors do not include an explicit auto commit parameter.
They always use the auto commit mode defined by the data source.

Data sources are configured to have a default auto commit mode depending on the
deployment scenario. For example, data sources in the server and middle tier
typically have auto commit off; those on the client may have it on. However, it is
also possible to configure data sources with a specific auto commit setting. This
permits data sources to be configured for a particular application and deployment
scenario. Contrast this with JDBC URLSs that may specify only a single
database/driver configuration.

Programs can verify and possibly override the current auto commit setting with the
JDBC connection that underlies their connection context.

Advanced Language Features 7-13

Connection Contexts

Note: Be aware of the auto commit status of the connections you
establish.

« Ifyou use the Or acl e class, then auto commit is off, unless you
specify it explicitly.

« Ifyou use the Def aul t Cont ext or a connection context with
Dr i ver Manager -style constructors, then the auto-commit
setting must always be specified explicitly.

« Ifyou use the Dat aSour ce mechanism, then the autocommit
setting is inherited from the underlying Dat aSour ce. In most
environments the Dat aSour ce object originates from JDBC,
and the auto commit option is on. To avoid unexpected
behavior, always check the auto commit setting.

Associating a DataSource with the DefaultContext

If the SQLJ program accesses the default connection context, and the default context
has not been set, then the SQLJ runtime will use the SQLJ default data source to
establish its connection. The SQLJ default data source is bound to the name:

j dbc/ def aul t Dat aSour ce

This mechanism provides a portable means to define and install a default JDBC
connection for the default SQLJ connection context.

Providing DataSourceSupport

For your program to use data sources, you must supply the packages
javax.sql.* andjavax. nam ng.*, andan | niti al Cont ext providerin
your Java environment. The latter is required to obtain the JNDI context in which
the SQLJ runtime can look up the Dat aSour ce object.

Typically, you would use Dat aSour ces in a JDK 1.2 environment with the Java
Extension classes, or in a J2EE environment. However, you can also use
Dat aSour ces under JDK 1.1.x with the Java extension classes.

All the SQLJ runtime libraries support Dat aSour ces. However, if you use the
runti mel2ee. zi p you always need to have j avax. sql . * and

j avax. nam ng. * in your CLASSPATH or the runtime will not load. By contrast,
the other libraries—r unti me. zi p, runti mell. zi p,andrunti mel2. zi p—use
reflection to retrieve Dat aSour ce objects.

7-14 SQLJ Developer’s Guide and Reference

Execution Contexts

Execution Contexts

An execution context is an instance of the sql j . runti me. Execut i onCont ext
class and provides a context in which SQL operations are executed. An execution
context instance is associated either implicitly or explicitly with each SQL operation
in your SQLJ application.

The Execut i onCont ext class contains methods for execution control, execution
status, execution cancellation, and update-batching operations which function in
the following ways:

Execution control operations of a given execution context instance modify the
semantics of subsequent SQL operations executed using that instance.

Execution status operations of a given execution context instance describe the
results of the most recent SQL operation that completed using that instance.

Execution cancellation operations of a given execution context instance
terminate the SQL operation that is currently executing using that instance.

Update-batching operations of a given execution context instance include
enabling and disabling update batching, setting the batch limit, and getting
update counts. (For information about update batching, see "Update Batching"
on page A-5.)

Note: There is only one execution context class, unlike connection
context classes where you declare additional classes as desired.
Every execution context is an instance of the Execut i onCont ext
class. So while the term connection context refers to a class that you
have declared, the term execution context refers to an instance of the
Execut i onCont ext class. This document specifies connection
context class, connection context instance, and execution context instance
to avoid confusion.

Relation of Execution Contexts to Connection Contexts

Each connection context instance implicitly has its own default execution context
instance, which you can retrieve by using the get Execut i onCont ext () method
of the connection context instance.

A single execution context instance will be sufficient for a connection context
instance except in the following circumstances:

You are using multiple threads with a single connection context instance.

Advanced Language Features 7-15

Execution Contexts

When using multithreading, each thread must have its own execution context
instance.

= You want to use different SQL execution control operations on different SQLJ
statements that employ the same connection context instance.

« You want to retain different sets of SQL status information from multiple SQL
operations that employ the same connection context instance.

As you execute successive SQL operations that employ the same execution
context instance, the status information from each operation overwrites the
status information from the previous operation.

Although execution context instances might appear to be associated with
connection context instances (given that each connection context instance has a
default execution context instance, and you can specify a connection context
instance and an execution context instance together for a particular SQLJ
statement), they actually operate independently. You can employ different execution
context instances in statements that employ the same connection context instance,
and vice versa.

For example, it is useful to use multiple execution context instances with a single
connection context instance if you use multithreading, with a separate execution
context instance for each thread. And you can use multiple connection context
instances with a single execution context instance if your program is
single-threaded and you want the same set of SQL control parameters to apply to
all the connection context instances. (See "ExecutionContext Methods" on page 7-18
for information about SQL control settings.)

To employ different execution context instances with a single connection context
instance, you must create additional instances of the Execut i onCont ext class and
specify them appropriately with your SQLJ statements.

Creating and Specifying Execution Context Instances

To employ an execution context instance other than the default with a given
connection context instance, you must construct another execution context instance.
There are no input parameters for the Exect i onCont ext constructor:

Execut i onCont ext nyExecQ x = new Execut i onCont ext () ;

You can then specify this execution context instance for use with any particular
SQLJ statement, much as you would specify a connection context instance. The
general syntax is as follows:

7-16 SQLJ Developer’s Guide and Reference

Execution Contexts

#sqgl [<conn_context><, ><exec_context>] { SQ@ operation };

For example, if you declare and instantiate a connection context class
MyConnCt xCl ass and create an instance myConnCt X, you can use the following
statement:

#sgl [nyConnQ x, nyExecG x] { DELETE FROMenp WHERE sal > 30000 };
You can subsequently use different execution context instances with myConnCt x or
different connection context instances with myExecCt x.

You can optionally specify an execution context instance while using the default
connection context instance, as follows:

#sgl [nyExecx] { DELETE FROM enp WHERE sal > 30000 };

Notes:

« Ifyou specify a connection context instance without an
execution context instance, then the default execution context
instance of that connection context instance is used.

« Ifyou specify an execution context instance without a
connection context instance, then the execution context instance
is used with the default connection context instance of your
application.

« Ifyou specify no connection context instance and no execution
context instance, then SQLJ uses your default connection and
its default execution context instance.

Execution Context Synchronization

Execut i onCont ext methods (discussed in "ExecutionContext Methods" on

page 7-18) are all synchr oni zed methods. Therefore, generally speaking, anytime
a statement tries to use an execution context instance (in essence, tries to use a
method of an execution context instance) already in use, the second statement will
be blocked until the first statement completes.

In a client application, this typically involves multithreading situations. A thread
that tries to use an execution context instance currently in use by another thread
will be blocked.

Advanced Language Features 7-17

Execution Contexts

To avoid such blockage, you must specify a separate execution context instance for
each thread that you use, as discussed in "Multithreading in SQLJ" on page 7-23.

The exception to the preceding discussion is for recursion, which is encountered
only in the server. Multiple SQLJ statements are allowed to simultaneously use the
same execution context instance if this situation results from recursive calls. An
example of this is where a SQLJ stored procedure (or function) has a call to another
SQLJ stored procedure (or function). If both use the default execution context
instance, as is typical, then the SQLJ statements in the second procedure will use
this execution context while the SQLJ call statement from the first procedure is also
still using it. This is allowed, and is further discussed in "Recursive SQLJ Calls in
the Server" on page 11-24.

ExecutionContext Methods

This section lists the methods of the Execut i onCont ext class, categorized as
status methods, control methods, cancellation method, and update batching
methods.

Status Methods

Use the following methods of an execution context instance to obtain status
information about the most recent SQL operation that completed using that
instance:

« getWArni ngs()—Returnsaj ava. sql . SQLWAr ni ng object containing the
first warning reported by the most recent SQL operation that completed using
this execution context instance. Warnings are returned in a chain—use the
get War ni ngs() method of the execution context instance to get the first
warning, then use the get Next War ni ng() method of each SQLWar ni ng
object to get the next warning. The chain contains all warnings generated
during the execution of the SQL operation.

« get Updat eCount () —Except when update batching is enabled, this returns an
i nt value specifying the number of rows updated by the last SQL operation
that completed using this execution context instance. Zero (0) is returned if the
last SQL operation was not a DML statement. The constant QUERY_COUNT is
returned if the last SQL operation produced an iterator or result set. The
constant EXCEPTI ON_COUNT is returned if the last SQL operation terminated
before completing execution, or if no operation has yet been attempted using
this execution context instance.

For batch-enabled applications, the value returned by get Updat eCount ()
would be one of several batch-related constant values—NEW BATCH_COUNT,

7-18 SQLJ Developer’s Guide and Reference

Execution Contexts

ADD_BATCH_COUNT, or EXEC_BATCH_COUNT. See "Execution Context Update
Counts" on page A-11 for more information.

Control Methods

Use the following methods of an execution context instance to control the operation
of future SQL operations executed using that instance (operations that have not yet
started):

« get MaxFi el dSi ze() —Returns an i nt value specifying the maximum
amount of data (in bytes) that would be returned from a SQL operation
subsequently, using this execution context instance. (This can be modified using
the set MaxFi el dSi ze() method.) This applies only to columns of type
Bl NARY, VARBI NARY, LONGVARBI NARY, CHAR, VARCHAR, or LONGVARCHAR.

By default this parameter is set to 0, meaning there is no size limit.

« set MaxFi el dSi ze() —Takes an i nt value as input to modify the field-size
maximum.

« get MaxRows() —Returns an i nt value specifying the maximum number of
rows that can be contained by any SQLJ iterator or JDBC result set created using
this execution context instance. (You can modify this using the set MaxRows()
method.) If the limit is exceeded, the excess rows are silently dropped without
any error report or warning.

By default, this parameter is set to 0, meaning there is no row limit.
« set MaxRows() —Takes ani nt value as input to modify the row maximum.

« get QueryTi meout () —Returns an i nt value specifying the timeout limit, in
seconds, for any SQL operation that uses this execution context instance. (You
can modify this using the set Quer yTi meout () method.) If a SQL operation
exceeds this limit, a SQL exception is thrown.

By default, this parameter is set to 0, meaning there is no query timeout limit.

« setQueryTi meout () —Takes an i nt value as input to modify the query
timeout limit.

« get Fet chSi ze() —Retrieves the number of rows that is the current fetch size
for iterator objects generated from this Execut i onCont ext object. If this
Execut i onCont ext object has not set a fetch size by calling
set Fet chSi ze(), then the value returned is zero. If this Execut i onCont ext
object has set a non negative fetch size by calling the method

Advanced Language Features 7-19

Execution Contexts

set Fet chSi ze(), then the return value is the fetch size specified on
set FetchSi ze().

set Fet chSi ze() —Gives the SQLJ runtime a hint as to the number of rows
that should be fetched when more rows are needed. The number of rows
specified affects only iterator objects created using this Execut i onCont ext
object. Specifying zero means that an implementation-depenent default value
will be used for the fetch size.

get Fet chDi r ect i on() —Retrieves the direction for fetching rows from
database tables that is the default for scrollable iterator objects that are
generated from this Execut i onCont ext object. If this Execut i onCont ext
object has not set a fetch direction by calling the method

set Fet chDi recti on(), the return value is FETCH_FORWARD.

set Fet chDi recti on() —Gives the SQLJ runtime a hint as to the direction in
which rows of scrollable iterator objects are processed. The hint applies only to
scrollable iterator objects that are created using this Execut i onCont ext
object. The default value is:

sqlj.runtine. Resul t Setlterator. FETCH FCRMRD.

This method throws a SQLExcept i on if the given direction is not one of
FETCH_FORWARD, FETCH_REVERSE, or FETCH_UNKNOWN.

Cancellation Method

Use the following method to cancel SQL operations in a multithreading
environment or to cancel a pending statement batch if update batching is enabled:

cancel () —In a multithreading environment, use this method in one thread to
cancel a SQL operation currently executing in another thread. It cancels the
most recent operation that has started, but not completed, using this execution
context instance. This method has no effect if no statement is currently being
executed using this execution context instance.

In a batch-enabled environment, use this to cancel a pending statement batch.
The batch is emptied, and none of the statements in the batch are executed.
After you cancel a batch, the next batchable statement encountered will be
added to a new batch. ("Canceling a Batch" on page A-10 discusses this.)

7-20 SQLJ Developer’s Guide and Reference

Execution Contexts

Update Batching Methods

Use the following methods to control update batching if you want your application
to use that performance enhancement feature (these methods, and update batching
in general, are further discussed in "Update Batching" on page A-5):

set Bat chi ng() —Takes a boolean value to enable update batching. See
"Enabling and Disabling Update Batching" on page A-7 for more information.

Update batching is disabled by default.

i sBat chi ng() —Returns a boolean value indicating whether update batching
is enabled (but does not indicate whether there is currently a pending batch).

get Bat chLi mi t () —Returns an i nt value indicating the current batch limit.
If there is a batch limit, a pending batch is implicitly executed once it contains
that number of statements. See "Setting a Batch Limit" on page A-12 for more
information.

By default, the batch limit is set to the Execut i onCont ext class static constant
value UNLI M TED_BATCH, meaning there is no batch limit.

set Bat chLi ni t () —Takes a positive, non-zero i nt value as input to set the
current batch limit. Two special values you can input are UNLI M TED_
BATCH—which means there is no limit—and AUTO_BATCH—which lets the
SQLJ runtime dynamically determine a batch limit.

execut eBat ch() —Executes the pending statement batch, returning an array
of i nt update counts that have meanings as described in "Execution Context
Update Counts" on page A-11. See "Explicit and Implicit Batch Execution" on
page A-8 for more information. Regarding error conditions, see "Error
Conditions During Batch Execution" on page A-15.

get Bat chUpdat eCount s() —Returns an array of i nt update counts for the
last batch executed, with meanings as described in "Execution Context Update
Counts" on page A-11. This method is useful in situations where the batch was
executed implicitly.

Example: Use of ExecutionContext Methods
The following code demonstrates the use of some Execut i onCont ext methods:

Execut i onCont ext execQ x =

Def aul t Cont ext . get Def aul t Cont ext () . get Execut i onCont ext () ;

/1 Vit only 3 seconds for operations to conplete
execQ x. set Quer yTi neout (3);

Advanced Language Features 7-21

Execution Contexts

/1 del ete using execution context of default connection context
#sgl { DELETE FROM enp WHERE sal > 10000 };

Systemout.println
("renoved " + execQ x. get Updat eCount () + " enpl oyees");

Relation of Execution Contexts to Multithreading

Do not use multiple threads with a single execution context. If you do, and two
SQLJ statements try to use the same execution context simultaneously, then the
second statement will be blocked until the first statement completes. Furthermore,
status information from the first operation will likely be overwritten before it can be
retrieved.

Therefore, if you are using multiple threads with a single connection context
instance, you should take the following steps:

1. Instantiate a unique execution context instance for use with each thread.

2. Specify execution contexts with your #sgl statements so that each thread uses
its own execution context (see "Specifying an Execution Context" above).

If you are using a different connection context instance with each thread, then no
instantiation and specification of execution context instances is necessary, because
each connection context instance implicitly has its own default execution context
instance.

See "Multithreading in SQLJ" on page 7-23 for more information about
multithreading.

7-22 SQLJ Developer’s Guide and Reference

Multithreading in SQLJ

Multithreading in SQLJ

This section discusses SQLJ support and requirements for multithreading and the
relation between multithreading and execution context instances.

You can use SQLJ in writing multithreaded applications; however, any use of
multithreading in your SQLJ application is subject to the limitations of your JDBC
driver or proprietary database access vehicle. This includes any synchronization
limitations.

You are required to use a different execution context instance for each thread. You
can accomplish this in one of two ways:

« Specify connection context instances for your SQLJ statements such that a
different connection context instance is used for each thread. Each connection
context instance automatically has its own default execution context instance.

« If you are using the same connection context instance with multiple threads,
then declare additional execution context instances and specify execution
context instances for your SQLJ statements such that a different execution
context instance is used for each thread.

For information about how to specify connection context instances and execution
context instances for your SQLJ statements, see "Specifying Connection Context
Instances and Execution Context Instances" on page 3-11.

If you are using one of the Oracle JDBC drivers, multiple threads can use the same
connection context instance if desired (as long as different execution context
instances are specified), and there are no synchronization requirements directly
visible to the user. Note, however, that database access is sequential—only one
thread is accessing the database at any given time. (Synchronization refers to the
control flow of the various stages of the SQL operations executing through your
threads. Each statement, for example, can bind input parameters, then execute, then
bind output parameters. With some JDBC drivers, special care must be taken not to
intermingle these stages.)

If a thread attempts to execute a SQL operation that uses an execution context that
is in use by another operation, then the thread is blocked until the current operation
completes. If an execution context were shared between threads, the results of a
SQL operation performed by one thread would be visible in the other thread. If both
threads were executing SQL operations, a race condition might occur—the results of
an execution in one thread might be overwritten by the results of an execution in
the other thread before the first thread had processed the original results. This is
why multiple threads are not allowed to share an execution context instance.

Advanced Language Features 7-23

Multithreading in SQLJ

For a complete multithreading sample application, see
"Multithreading—MultiThreadDemo.sqlj" on page 12-56.

7-24 SQLJ Developer’s Guide and Reference

lterator Class Implementation and Advanced Functionality

lterator Class Implementation and Advanced Functionality

This section discusses how iterator classes are implemented and what additional
functionality they offer beyond the essential methods discussed in "Using Named
Iterators” on page 3-40 and "Using Positional Iterators" on page 3-44.

Implementation and Functionality of Iterator Classes

Any named iterator class you declare will be generated by the SQLJ translator to
implement the sql j . runti me. Namedl t er at or interface. Classes implementing
the NanedlI t er at or interface have functionality that maps iterator columns to
database columns by name, as opposed to by position.

Any positional iterator class you declare will be generated by the SQLJ translator to
implement the sql j . runti me. Posi ti onedl t er at or interface. Classes
implementing the Posi ti onedl t er at or interface have functionality that maps
iterator columns to database columns by position, as opposed to by name.

Both the Nanedl t er at or interface and the Posi ti onedl t er at or interface, and
therefore all generated SQLJ iterator classes as well, implement or extend the
sqlj.runtinme. ResultSetlterator interface.

The Resul t Set | t er at or interface specifies the following methods for all SQLJ
iterators (both named and positional):

« cl ose()—Closes the iterator.

« get Resul t Set () —Extracts the underlying JDBC result set from the iterator.
« i sCl osed()—Determines if the iterator has been closed.

« hext () —Moves to the next row of the iterator.

The Posi ti onedl t er at or interface adds the following method specification for
positional iterators:

« endFet ch() —Determines if you have reached the last row of a positional
iterator.

As discussed in "Using Named Iterators" on page 3-40, use the next () method to
advance through the rows of a named iterator, and accessor methods to retrieve the
data. The SQLJ generation of a named iterator class defines an accessor method for
each iterator column, where each method name is identical to the corresponding
column name. For example, if you declare a name column, then a nane() method
will be generated.

Advanced Language Features 7-25

Iterator Class Implementation and Advanced Functionality

As discussed in "Using Positional Iterators" on page 3-44, use a FETCH | NTO
statement together with the endFet ch() method to advance through the rows of a
positional iterator and retrieve the data. A FETCH | NTOstatement implicitly calls
the next () method; do not explicitly use the next () method in a positional
iterator. The FETCH | NTOstatement also implicitly calls accessor methods that are
named according to iterator column numbers. The SQLJ generation of a positional
iterator class defines an accessor method for each iterator column, where each
method name corresponds to the column position.

Use the cl ose() method to close any iterator once you are done with it.

The get Resul t Set () method is central to SQLJ-JDBC interoperability and is
discussed in "SQLJ Iterator and JDBC Result Set Interoperability” on page 7-41.

Note: Youcanuse aResult Setlterator objectdirectly asa
weakly typed iterator if you are interested only in converting it to a
JDBC result set and you do not need named or positional iterator
functionality. For information, see "Using and Converting Weakly
Typed lterators (ResultSetlterator)" on page 7-43.

Use of the IMPLEMENTS Clause in Iterator Declarations

There might be situations where it will be useful to implement an interface in your
iterator declaration. For general information and syntax, see "Declaration
IMPLEMENTS Clause" on page 3-5.

You might, for example, have an iterator class where you want to restrict access to
one or more columns. As discussed in "Using Named Iterators" on page 3-40, a
named iterator class generated by SQLJ has an accessor method for each column in
the iterator. If you want to restrict access to certain columns, you can create an
interface with only a subset of the accessor methods, then expose instances of the
interface type to the user instead of exposing instances of the iterator class type.

For example, assume you are creating a named iterator of employee data, with
columns ENAME (employee name), EMPNO (employee number), and SAL (salary).
Accomplish this as follows:

#sgl iterator Enplter (Sring enane, int enpno, float sal);

This generates a class Enpl t er with ename(), enpno(), and sal () accessor
methods.

Assume, though, that you want to prevent access to the SAL column. You can create
an interface Enpl t er | nt f ¢ that has enane() and enpno() methods, but no

7-26 SQLJ Developer’s Guide and Reference

lterator Class Implementation and Advanced Functionality

sal () method. Then you can use the following iterator declaration instead of the
declaration above (presume Enpl t er | nt f ¢ is in package nmypackage):

#sqgl iterator Enplter inplenents nypackage. Enplterintfc
(Sring emane, int enpno, float sal);

Then if you code your application so that users can access data only through
Enpl t er | nt f ¢ instances, they will not have access to the SAL column.

Subclassing lterator Classes

SQLJ supports the ability to subclass iterator classes. This feature can be very useful
in allowing you to add functionality to your queries and query results. See
"Subclassing Iterators—SubclasslterDemo.sqlj" on page 12-64 for an example of an
iterator subclass that treats rows of a query as individual objects and writes them
into a Java vector.

The one key requirement of an iterator subclass is that you must supply a public
constructor that takes an instance of sql j . runti ne. RTResul t Set as input. The
SQLJ runtime will call this constructor in assigning query results to an instance of
your subclass. Beyond that, you provide functionality as you choose.

You can continue to use functionality of the original iterator class (the superclass of
your subclass). For example, you can advance through query results by calling the
super . next () method.

Scrollable lterators

Patterned after the JDBC 2.0 specification for scrollable JDBC Resul t Set s, the 1SO
standard for SQLJ has adopted support for scrollable iterators.

Declaring Scrollable Iterators

To characterize an iterator as scrollable, add the following clause to the iterator
declaration.

inplenents sqlj.runtine. Scrollable
In this case, the SQLJ translator generates an iterator that implements the

Scrol | abl e interface. The following declaration declares a named, scrollable
iterator.

#sgl public static MScriter inplenents sqlj.runtine. Scrollabl e
(String enane, int enpno);

Advanced Language Features 7-27

Iterator Class Implementation and Advanced Functionality

The code that is generated by the SQLJ translator for the MyScr I t er class will
automatically support all of the methods of the Scr ol | abl e interface. Next is a
discussion of those Scr ol | abl e methods that you can use with positional as well
as nhamed scrollable iterators.

The Scrollable Interface

You can provide hints about the fetch direction to scrollable iterators. The following
methods are defined on scrollable iterators as well as on execution contexts. Use an
Execut i onCont ext to provide the default direction when creating a scrollable
iterator.

« getFetchDirection()—Retrieves the direction for fetching rows from
database tables.

« setFetchDirection(int) —Givesthe SQLJruntime a hint as to the
direction in which rows are processed. The direction should be one of
sqlj.runtinme. ResultSetlterator. FETCH FORWARD, FETCH REVERSE,
or FETCH_UNKNOVN.

If you do not specify a value for the direction on the Execut i onCont ext , then
FETCH_FORWARD will be used as a default.

There are also a number of predicates on scrollable iterators. All these methods will
return f al se whenever the result set underlying the iterator contains no rows.

« i sBeforeFirst()—Indicates whether the iterator object is before the first
row in the result set.

« i sFirst()—Indicates whether the iterator object is on the first row of the
result set.

« i sLast () —Indicates whether the iterator object is on the last row of the result
set. Note that calling the method i sLast () may be expensive, because the
SQLJ driver may need to fetch ahead one row to determine whether the current
row is the last row in the result set.

« i SAfterLast () —Indicates whether the iterator object is after the last row in
the result set.

Scrollable Named lterators

Named iterators use movement methods to navigate through the rows of a result
set. Non-scrollable iterators only have the next () function for movement. Most
movement methods for scrollable iterators work similarly to next (), in that they
try to position the iterator on an actual row of the result set. They return t r ue if the

7-28 SQLJ Developer’s Guide and Reference

lterator Class Implementation and Advanced Functionality

iterator ends up on a valid row and f al se if it does not. Additionally, if you
attempt to position the iterator object beyond the first (last) row in the result set, this
leaves the iterator object before the first (after the last) row, respectively.

« previous()—Moves the iterator object to the previous row in the result set.
« first()—Moves the iterator object to the first row in the result set.
« | ast () —Moves the iterator object to the last row in the result set.

« absol ute(int) — Moves the iterator object to the given row number in the
result set. The first row is row 1, the second is row 2, and so on. If the given
row number is negative, the iterator object moves to an absolute row position
with respect to the end of the result set. For example, calling absol ut e(- 1)
positions the iterator object on the last row, absol ut e(- 2) indicates the
next-to-last row, and so on.

« relative(int)—Moves the iterator object a relative number of rows, either
positive or negative. Callingr el ati ve(0) is valid, but does not change the
iterator object position.

The methods bef or eFi rst () and af t er Last () returnvoi d, because they never
place the iterator object on an actual row of the result set.

« afterlLast () —Moves the iterator object to the end of the result set, just after
the last row. This has no effect if the result set contains no rows.

« DbeforeFirst () —Moves the iterator object to the front of the result set, just
before the first row. This has no effect if the result set contains no rows.

Scrollable Positional lterators

You are already familiar with the FETCH syntax for positional iterators. For
example:

#sgl { FETCH :iter INTO:x, :y, :z };

This is actually an abbreviated version of the following syntax.
#sgl { FETCH NEXT FRM:iter INTO:x, :y, :z };

Now it is easy to see the pattern for moving to the prevoius, first, and, respectively,
last row in the result set. (Unfortunately, JDBC 2.0—after which the movement
methods were modeled—uses pr evi ous() , whereas the FETCH syntax, which is
patterned after SQL, employs PRI OR. In case you should forget this inconsistency,
the SQLJ translator will also accept FETCH PREVI OUS.) Note that in all these cases,

Advanced Language Features 7-29

Iterator Class Implementation and Advanced Functionality

i ter.endFetch() returns true whenever the FETCH fails to move to a valid row
and retrieve values.

#sgl { FETAHPR AR FROM:iter INTO: X, :y, :z };
#sgl { FETGHFRST FROM:iter INTO: X, :y, :z };
#sgl { FETCH LAST FRM:iter INTO:x, :y, :z };

Finally, there is also syntax to pass a numeric value to absolute and relative
movements. As before, i t er . endFet ch() returnstr ue whenever the FETCH fails
to move to a valid row and retrieve values.

#sgl { FETCH ABSQLUTE :n FROM:iter INTO:x, :y,

1z}
#sgl { FETCH RELATIVE :n FROM:iter INTO:x, :y, :z };

Note that you must use a host expression—you cannot simply use a constant for the
numeric value. Thus, instead of:

#sgl { FETCH RELATIVE :n FROM:iter INTO:x, @y, :z };

you must write:

#sgl { FETCH RELATIVE O FROM:iter INTO:Xx, :y, :z };

Incidentally, this command leaves the position of the iterator unchanged and—if the
iterator is on a valid row—just populates the variables.

From JDBC ResultSets to SQLJ Iterators — FETCH CURRENT Syntax

The last observation is actually useful if you have an existing JDBC program that
you want to rewrite in SQLJ with as little modification as possible.

Your JDBC ResultSet will use only movement methods, such as next (),

previ ous(),absol ute(), and so on. You can immediately model this in SQLJ
through a named iterator. However, this also implies that all columns of the SQL
result set must have a proper name. In practice many (if not all) columns of the
result will require introduction of alias names. This is unacceptable if the query text
is to remain untouched.

The alternative is to define a positional iterator type for the result set. Now no
change is made to the query source. However, this approach forces changes to the
control-flow logic of the program. Take the following JDBC code sample:

ResultSet rs = ... // execute ...query...;
vhile (rs.next()) {
X 1= rs.get Xxx(1); y:=rs.get Xxx(2);
...process...

7-30 SQLJ Developer’s Guide and Reference

lterator Class Implementation and Advanced Functionality

}

This translates along the following lines to SQLJ:
Iterator ri;

#sgl it ={ ...query... };

vhile(true) {

#sgl { FETGH :it INTO:x, :y };
if (it.endFetch()) break;
...process...

}

The transformations to the program logic will become even more onerous when
considering arbitrary movements on scrollable iterators. Because positional iterators
implement all the movement commands of hamed iterators, it is possible to exploit
this and use RELATI VE : (0) to populate variables from the iterator:

Iterator it;

#sql it ={ ...query... };

vhile (it.next()) {
#sgl { FETCH RELATIVE : (0) FROM:it INTO:x, :y };
...process...

}

Now, you can preserve both the original query and the original program logic.
Unfortunately, there still is one drawback to this approach: the iterator type

I t er at or must be Scr ol | abl e — even if this property is not really needed. To
address this, the following syntax extension is furnished by Oracle SQLJ:

#sgl { FETCH QURRENT FRM:iter INTO: X, :y, :z };

Finally, you can rewrite the JDBC example in SQLJ for scrollable as well as
non-scrollable iterators.

Anylterator ai;

#sgl ai ={ ...query... };

vhile (ai.next()) {
#sgl { FETCH ORRENT FRIM:ai INTO: X, :y };
...process...

Advanced Language Features 7-31

Advanced Transaction Control

Advanced Transaction Control

SQLJ supports the SQL SET TRANSACTI ON statement to specify the access mode
and isolation level of any given transaction. Standard SQLJ supports READ ONLY
and READ WRI TE access mode settings, but Oracle JDBC does not support READ
ONLY. (You can set permissions to have the same effect, however.) Supported
settings for isolation level are SERI ALI ZABLE, READ COVM TTED, READ
UNCOWM TTED, and REPEATABLE READ. Oracle SQL, however, does not support
READ UNCOWVM TTED or REPEATABLE READ.

READ W\RI TE is the default access mode in both standard SQL and Oracle SQL.

READ COWM TTED s the default isolation level in Oracle SQL; SERI ALl ZABLE is
the default in standard SQL.

Access modes and isolation levels are briefly described below. For more
information, see the Oracle8i SQL Reference. You might also consult any guide to
standard SQL for additional conceptual information.

For an overview of transactions, including SQLJ support for the basic transaction
control operations COMM T and ROLLBACK, see "Basic Transaction Control" on
page 4-28.

SET TRANSACTION Syntax
In SQLJ, the SET TRANSACTI ON statement has the following syntax:

#sgl { SET TRANSACTI ON <access_node>, <l SOLATI ON LEVEL i sol ation | evel > };

If you do not specify a connection context instance, then the statement applies to the
default connection.

If you use SET TRANSACTI ON, it must be the first statement in a transaction (in
other words, the first statement since your connection to the database or your most
recent COVMM T or ROLLBACK), preceding any DML statements.

In standard SQLJ, any access mode or isolation level you set will remain in effect
across transactions until you explicitly reset it at the beginning of a subsequent
transaction.

In a standard SQLJ SET TRANSACTI ON statement, you can optionally specify the
isolation level first, or specify only the access mode, or only the isolation level.
Following are some examples:

#sql { SET TRANSACTION READ VR TE };

7-32 SQLJ Developer’s Guide and Reference

Advanced Transaction Control

#sql { SET TRANSACTI ON | SCLATI ON LEVEL SER ALl ZABLE };
#sql { SET TRANSACTI ON READ VR TE, | SCLATI ON LEVEL SER ALI ZABLE };
#sql { SET TRANSACTI ON | SCLATI ON LEVEL READ GOMM TTED, READ WR TE };

You can also specify a particular connection context instance for a SET
TRANSACTI ON statement, as opposed to having it apply to the default connection:

#sql [nyQxt] { SET TRANSACTI ON | SCLATI ON LEVEL SER ALI ZABLE };

Note that in SQLJ, both the access mode and the isolation level can be set in a single
SET TRANSACTI ONstatement. This is not true in other Oracle SQL tools such as
Server Manager or SQL* Pl us, where a single statement can set one or the other,
but not both.

Access Mode Settings

The READ WRI TE and READ ONLY access mode settings (where supported) have
the following functionality:

« READ WRI TE (default)—In a READ WRI TE transaction, the user is allowed to
update the database. SELECT, | NSERT, UPDATE, and DELETE are all legal.

« READ ONLY (not supported by Oracle JDBC)—In a READ ONLY transaction, the
user is not allowed to update the database. SELECT is legal, but | NSERT,
UPDATE, DELETE, and SELECT FOR UPDATE are not.

Isolation Level Settings

The READ COWM TTED, SERI ALI ZABLE, READ UNCOVM TTED, and REPEATABLE
READ isolation level settings (where supported) have the following functionality:

« READ UNCOWM TTED (not supported by Oracle8i)—Dirty reads, non-repeatable
reads, and phantom reads are all allowed. (See below for definitions of the
italicized terms.)

« READ COW TTED (default for Oracle8i)—Dirty reads are prevented,;
non-repeatable reads and phantom reads are allowed. If the transaction
contains DML statements that require row locks held by other transactions, then
any of the statements will block until the row lock it needs is released by the
other transaction.

« REPEATABLE READ (not supported by Oracle8i)—Dirty reads and
non-repeatable reads are prevented; phantom reads are allowed.

Advanced Language Features 7-33

Advanced Transaction Control

« SERI ALI ZABLE—Dirty reads, non-repeatable reads, and phantom reads are all
prevented. Any DML statements in the transaction cannot update any resource
that might have had changes committed after the transaction began. Such DML
statements will fail.

A dirty read occurs when transaction B accesses a row that was updated by
transaction A, but transaction A later rolls back the updates. As a result, transaction
B sees data that was never actually committed to the database.

A non-repeatable read occurs when transaction A retrieves a row, transaction B
subsequently updates the row, and transaction A later retrieves the same row again.
Transaction A retrieves the same row twice but sees different data.

A phantom read occurs when transaction A retrieves a set of rows satisfying a given
condition, transaction B subsequently inserts or updates a row such that the row
now meets the condition in transaction A, and transaction A later repeats the
conditional retrieval. Transaction A now sees an additional row; this row is referred
to as a "phantom".

You can think of the four isolation level settings being in a progression:
SER ALI ZABLE > REPEATABLE READ > READ GOMM TTED > READ UNCOWM TTED

If a desired setting is unavailable to you—such as REPEATABLE READ or READ
UNCOWM TTED if you use an Oracle database—use a "greater" setting (one further to
the left) to ensure having at least the level of isolation that you want.

Using JDBC Connection Class Methods

You can optionally access and set the access mode and isolation level of a
transaction, using methods of the underlying JDBC connection instance of your
connection context instance. SQLJ code using these JDBC methods is not portable,
however.

Following are the Connect i on class methods for access mode and isolation level
settings:

« public abstract int getTransactionlsol ation()—Returns the
current transaction isolation level as one of the following constant values:
TRANSACTI ON_NONE
TRANSACTI ON_READ_COWM TTED
TRANSACTI ON_SERI ALI ZABLE
TRANSACTI ON_READ_UNCOWM TTED
TRANSACTI ON_REPEATABLE_READ

7-34 SQLJ Developer’s Guide and Reference

Advanced Transaction Control

publ i c abstract void setTransactionlsol ation(int)—Setsthe
transaction isolation level, taking as input one of the preceding constant values.

publ i c abstract bool ean i sReadOnl y() —Returnstr ue if the
transaction is READ ONLY:; returns f al se if the transaction is READ WRI TE.

public abstract void set ReadOnl y(bool ean) —Sets the transaction
access mode to READ ONLY ift r ue is input; sets the access mode to READ
WRI TEif f al se is input.

Advanced Language Features 7-35

SQLJ and JDBC Interoperability

SQLJ and JDBC Interoperability

As described in "Introduction to SQLJ" on page 1-2, you can use SQLJ statements for
static SQL operations, but not for dynamic operations. You can, however, use JDBC
statements for dynamic SQL operations, and there might be situations where your
application will require both static and dynamic SQL operations. SQLJ allows you
to use SQLJ statements and JDBC statements concurrently and provides
interoperability between SQLJ constructs and JDBC constructs.

Two kinds of interactions between SQLJ and JDBC are particularly useful:
« between SQLJ connection contexts and JDBC connections
« between SQLJ iterators and JDBC result sets

For general information about JDBC functionality, see the Oracle8i JDBC Developer’s
Guide and Reference.

SQLJ Connection Context and JDBC Connection Interoperability

SQLJ allows you to convert, in either direction, between SQLJ connection context
instances and JDBC connection instances.

Note: When converting between a SQLJ connection context and a
JDBC connection, bear in mind that the two objects are sharing the
same physical database connection. See "About Shared
Connections" on page 7-39.

Converting from Connection Contexts to JDBC Connections

If you want to perform a dynamic SQL operation through a database connection
that you have established in SQLJ (for example, an operation where the name of the
table to select from is not determined until runtime), then you must convert the
SQLJ connection context instance to a JDBC connection instance.

Any connection context instance in a SQLJ application, whether an instance of the
sqlj.runtine.ref. Defaul t Cont ext class or of a declared connection context
class, contains an underlying JDBC connection instance and a get Connect i on()
method that returns that JDBC connection instance. Use the JDBC connection
instance to create JDBC statement objects if you want to use any dynamic SQL
operations.

Following is an example of how to use the get Connecti on() method.

7-36 SQLJ Developer’s Guide and Reference

SQLJ and JDBC Interoperability

Imports:

inport java.sql.*;

Executable code:

Def aul t Gont ext ctx = new Def aul t Cont ext
("j dbc: oracl e: thin: @ocal host: 1521: orcl ", "scott", "tiger", true);

(static operations through SQJ ctx connection context instance)
Gonnection conn = ctx. get Gnnection();

(dynami ¢ operations through JOBC conn connection i nstance)

(The connection context instance can be an instance of the Def aul t Cont ext class
or of any connection context class that you have declared.)

To retrieve the underlying JDBC connection of your default SQLJ connection, you
can use get Connecti on() directly from a

Def aul t Cont ext . get Def aul t Cont ext () call, where get Def aul t Cont ext ()
returns a Def aul t Cont ext instance that you had previously initialized as your
default connection, and get Connect i on() returns its underlying JDBC
connection instance. In this case, because you do not have to use the

Def aul t Cont ext instance explicitly, you can also use the Or acl e. connect ()
method. This method implicitly creates the instance and makes it the default
connection.

(See "Connection Considerations" on page 4-8 for an introduction to connection
context instances and default connections. See "More About the Oracle Class" on
page 4-14 for information about the Or acl e. connect () method.)

Following is an example.
Imports:

inport java.sql.*;

Executable code:

Gonnection conn = Q acl e. connect (
"jdbc: oracl e:thin: @ocal host: 1521: orcl ", "scott", "tiger").getGnnection();

(dynami ¢ operations through JOBC conn connection i nstance)

Advanced Language Features 7-37

SQLJ and JDBC Interoperability

Example: JDBC and SQLJ Connection Interoperability for Dynamic SQL Following is a
sample method that uses the underlying JDBC connection instance of the default
SQLJ connection context instance to perform dynamic SQL operations. The dynamic
operations are performed using JDBC j ava. sqgl . Connecti on,

j ava. sql . Prepar edSt at ement ,and j ava. sql . Resul t Set objects. (For
information about such basic features of JDBC programming, see the Oracle8i JDBC
Developer’s Guide and Reference.)

inport java.sql.*;
public static void projectsDue(bool ean dueThi sMonth) throws SQException {

/1 Get JDBC connection frompreviously initialized SQLJ Def aul t Context .
Gonnection conn = Defaul t Cont ext . get Def aul t Cont ext () . get Gonnecti on();

Sring query = "SEHLECT nane, start_date + duration " +
"FROM proj ects WHERE start_date + duration >= sysdate";
i f (dueThi shont h)
query +="ANDto_char(start_date + duration, fmMonth’) " +
"=to_char(sysdate, fmMonth’) ",

PreparedStatement pstmt = conn.prepareStatement(query);
ResultSet rs = pstmt.executeQuery();
while (rs.next()) {
System.outprintin("Project: " + rs.getString(1) + " Deadiine: " +
rs.getDate(2));
}
rs.close();
pstmt.close();
}

Converting from JDBC Connections to Connection Contexts

If you initiate a connection as a JDBC Connect i on or Or acl eConnecti on
instance but later want to use it as a SQLJ connection context instance (for example,
if you want to use it in a context expression to specify the connection to use for a
SQLJ executable statement), then you can convert the JDBC connection instance to a
SQLJ connection context instance.

The Def aul t Cont ext class and all declared connection context classes have a
constructor that takes a JDBC connection instance as input and constructs a SQLJ
connection context instance.

7-38 SQLJ Developer’s Guide and Reference

SQLJ and JDBC Interoperability

For example, presume you instantiated and defined the JDBC connection instance
conn and want to use the same connection for an instance of a declared SQLJ
connection context class, My Cont ext . You can do this as follows:

#sgl context M/Context;

M/Cont ext nyctx = new M/Cont ext (conn) ;

About Shared Connections

A SQLJ connection context instance and the associated JDBC connection instance
share the same underlying database connection. As a result, the following is true:

When you get a JDBC connection instance from a SQLJ connection context
instance (using the connection context get Connect i on() method), the
Connect i on instance inherits the state of the connection context instance.
Among other things, the Connect i on instance will retain the auto-commit
setting of the connection context instance.

When you construct a SQLJ connection context instance from a JDBC
connection instance (using the connection context constructor that takes a
connection instance as input), the connection context instance inherits the state
of the Connect i on instance. Among other things, the connection context
instance will retain the auto-commit setting of the Connect i on instance. (By
default, a JDBC connection instance has an auto-commit setting of t r ue, but
you can alter this through the set Aut oConmi t () method of the Connecti on
instance.)

Given a SQLJ connection context instance and associated JDBC connection
instance, calls to methods that alter session state in one instance will also affect
the other instance, because it is actually the underlying shared database session
that is being altered.

Because there is just a single underlying database connection, there is also a
single underlying set of transactions. A COVM T or ROLLBACK operation in one
connection instance will affect any other connection instances that share the
same underlying connection.

Advanced Language Features 7-39

SQLJ and JDBC Interoperability

Note: Itis also possible for multiple SQLJ connection context
instances to be created from the same JDBC connection instance
and, therefore, to share the same underlying database connection.
This might be useful, for example, if you want to share the same set
of transactions between program modules. The preceding notes
apply to this situation as well.

Closing Shared Connections

When you get a JDBC connection instance from a SQLJ connection context instance
(using the get Connecti on() method) or you create a SQLJ connection context
instance from a JDBC connection instance (using the connection context
constructor), you must close only the connection context instance. By default,
calling the cl ose() method of a connection context instance closes the associated
JDBC connection instance and the underlying database connection, thereby freeing
all resources associated with the connection.

Note, however, that closing the JDBC connection instance will not close the
associated SQLJ connection context instance. The underlying database connection
would be closed, but the resources of the connection context instance would not be
freed until garbage collection.

If you want to close a SQLJ connection context instance without closing the
associated JDBC connection instance (if, for example, the Connect i on instance is
being used elsewhere, either directly or by another connection context instance),
then you can specify the boolean constant KEEP_CONNECT| ONto the cl ose()
method, as follows (presume you have been using a connection context instance
ct x):

ct x. cl ose(Gonnect i onCont ext . KEEP_CONNECTI ON) ;

If you do not specify KEEP_CONNECTI ON, then the associated JDBC connection
instance is closed by default. You can also specify this explicitly:

ct x. cl ose(Gonnect i onCont ext . ALCBE_ CONNECTI QN ;

KEEP_CONNECTI ONand CLOSE_CONNECTI ON are static constants of the
sqlj.runtinme. Connecti onCont ext interface.

If you do not explicitly close a connection context instance, then it will be closed by
the finalizer during garbage collection with KEEP_CONNECTI ON, meaning the
resources of the JDBC connection instance would not be freed until released
explicitly or by garbage collection.

7-40 SQLJ Developer’s Guide and Reference

SQLJ and JDBC Interoperability

SQLJ lterator and JDBC Result Set Interoperability

SQLJ allows you to convert in either direction between SQLJ iterators and JDBC
result sets. For situations where you are selecting data in a SQLJ statement but do
not care about strongly typed iterator functionality, SQLJ also supports a weakly
typed iterator, which you can convert to a JDBC result set.

Converting from Result Sets to Named or Positional Iterators

There are a number of situations where you might find yourself manipulating JDBC
result sets. For example, another package might be implemented in JDBC and
provide access to data only through result sets, or might require

Resul t Set Met aDat a information because it is a routine written generically for
any type of result set. Or your SQLJ application might invoke a stored procedure
that returns a JDBC result set.

If the dynamic result set has a known structure, it is typically desirable to
manipulate it as an iterator to use the strongly typed paradigm that iterators offer.

In SQLJ, you can populate a named or positional iterator object by converting an
existing JDBC result set object. This can be thought of as casting a result set to an
iterator, and the syntax reflects this, as follows:

#sql iter = { CAST :rs };
This binds the result set object r s into the SQLJ executable statement, converts the
result set, and populates the iterator i t er with the result set data.

Following is an example. Assume myEnpQuer y() is a static Java function in a class
called RSCl ass, with a predefined query that returns a JDBC result set object.

Imports and declarations:

inport java.sql.*;
#sgl public iterator Mlterator (String enane, float sal);

Executable code:

Resul t Set rs;
Mlterator iter;

rs = R ass. nyEnpQuery();
#sql iter = { CAST :rs };

(process iterator)

Advanced Language Features 7-41

SQLJ and JDBC Interoperability

iter.close();

This example could have used a positional iterator instead of a named iterator; the
functionality is identical.

The following rules apply when converting a JDBC result set to a SQLJ iterator and
processing the data:

= To convert to a positional iterator, the result set and iterator must have the same
number of columns, and the types must map correctly.

« To convert to a named iterator, the result set must have at least as many
columns as the iterator, and all columns of the iterator must be matched by
name and type. (If the result set and iterator do not have the same number of
columns, then the SQLJ translator will generate a warning unless you use the
-war n=nostri ct option setting.)

= The result set being cast must implement the j ava. sql . Resul t Set interface.
(The classor acl e. j dbc. driver. Oracl eResul t Set implements this
interface, as does any standard result set class.)

« The iterator receiving the cast must be an instance of an iterator class that was
declared as publ i c.

= Do not access data from the result set, either before or after the conversion.
Access data from the iterator only.

= When you are finished, close the iterator, not the result set. Closing the iterator
will also close the result set, but closing the result set will not close the iterator.
When interoperating with JDBC, always close the SQLJ entity.

For a complete example of how SQLJ and JDBC can interoperate in the same
program, see "Interoperability with JDBC—JDBCInteropDemo.sqlj" on page 12-58.

Converting from Named or Positional Iterators to Result Sets

You might also encounter situations where you want to define a query using SQLJ
but ultimately need a result set. (SQLJ offers more natural and concise syntax, but

perhaps you want to do dynamic processing of the results, or perhaps you want to
use an existing Java method that takes a result set as input.)

So that you can convert iterators to result sets, every SQLJ iterator class, whether
named or positional, is generated with a get Resul t Set () method. This method
can be used to return the underlying JDBC result set object of an iterator object.

Following is an example showing use of the get Resul t Set () method.

7-42 SQLJ Developer’s Guide and Reference

SQLJ and JDBC Interoperability

Imports and declarations:

inport java.sql.*;

#sgl public iterator Mlterator (String enane, float sal);

Executable code:

Mlterator iter;

#sgl iter = { SHEECT * FRMenp };
ResultSet rs = iter.getResul tSet();

(process result set)

iter.close();

The following rules apply when converting a SQLJ iterator to a JDBC result set and
processing the data:

« When writing iterator data to a result set, you should access data only through
the result set. Do not attempt to directly access the iterator, either before or after
the conversion.

« When you finish, close the original iterator, not the result set. Closing the
iterator will also close the result set, but closing the result set will not close the
iterator. When interoperating with JDBC, always close the SQLJ entity.

Using and Converting Weakly Typed Iterators (ResultSetlterator)

You might have a situation similar to what is discussed in "Converting from Named
or Positional Iterators to Result Sets" on page 7-42, but where you do not at any time
require the strongly typed functionality of the iterator. All you might care about is
being able to use SQLJ syntax for the query and then processing the data
dynamically from a result set.

For such circumstances, you can directly use the type
sqlj.runtinme. Result Setlterator toreceive query data, so that you need not
declare a named or positional iterator class.

Inusing Resul t Set | t er at or instead of a strongly typed iterator, you are trading
the strong type-checking of the SQLJ SELECT operation for the convenience of not
having to declare an iterator class.

Advanced Language Features 7-43

SQLJ and JDBC Interoperability

In using SQLJ statements and Resul t Set | t er at or functionality instead of using
JDBC statements and standard result set functionality, you enable yourself to use
the more concise SELECT syntax of SQLJ.

As discussed in "lterator Class Implementation and Advanced Functionality” on
page 7-25, the Resul t Set | t er at or interface underlies all named and positional
iterator classes and specifies the get Resul t Set () and cl ose() methods.

Following is an example of how to use and convert a weakly typed iterator.
Imports:

inport sqlj.runtine. *;
inport java.sql.*;

Executable code:
Result Setlterator rsiter;

#sgl rsiter = { SELECT * FROMtabl e };
ResultSet rs = rsiter. get Resul t Set();

(process result set)

rsiter.close();

The following rules apply when converting a Resul t Set | t er at or objectto a
JDBC result set and processing the data:

« There is no data-access functionality in a Resul t Set | t er at or object. You
must convert it to a result set to access the query data.

=« Whenyou finish, close the Resul t Set | t er at or object, not the result set.
Closing the Resul t Set | t er at or will also close the result set, but closing the
result set will not close the Resul t Set | t er at or. When interoperating with
JDBC, always close the SQLJ entity.

Note: Because Resul t Set |t er at or objects are intended only to
be converted to JDBC result sets, they are not supported as host
expressions in SQLJ.

7-44 SQLJ Developer’s Guide and Reference

8

Translator Command Line and Options

Once you have written your source code, you must translate it using the SQLJ
translator. This chapter discusses the SQLJ translator command line, options, and
properties files.

The following topics are discussed:

« Translator Command Line and Properties Files
« Basic Translator Options

« Advanced Translator Options

« Translator Support and Options for Alternative Environments

Translator Command Line and Options 8-1

Translator Command Line and Properties Files

Translator Command Line and Properties Files

This section discusses general command-line syntax for the script sql j that you
use to run the SQLJ translator, and lists all the options available. It then discusses
SQLJ properties files, which can be used instead of the command line to set most
options, and the SQLJ_OPTI ONS environment variable, which can be used in
addition to or instead of the command line for setting options. For detailed
information about settings for the basic options, see "Basic Translator Options" on
page 8-19. For information about more advanced options, see "Advanced Translator
Options" on page 8-48 and "Translator Support and Options for Alternative
Environments" on page 8-64.

The sqgl j scriptinvokes a Java virtual machine (JVM) and passes the class name of
the SQLJ translator (sqgl j . t ool s. Sgl j) to the JVM. The JVM invokes the
translator and performs operations such as parsing the command line and
properties files. For simplicity, running the script is referred to as "running SQLJ",
and its command line is referred to as the "SQLJ command line".

This is the typical general syntax for the command line:

sqlj <optionlist> filelist

The option list is a list of SQLJ option settings, separated by spaces. There are also
prefixes to mark options to pass to other executable programs.

The file list is the list of files, separated by spaces, to be processed by the SQLJ
translator (they can be . sql j,.]j ava,. ser,or.j ar files, as explained in
"Command-Line Syntax and Operations" on page 8-10). The * wildcard entry can be
used in file names. For example, Foo*. sql j would find Fool. sql j,

Foo2. sql j, and Foobar. sql j .

Note: Itis not required that all the options precede the file list.
Options may appear anywhere in the command line and are
processed in order.

Do not include . cl ass files in the file list, but do be sure that your CLASSPATH is
set so that the SQLJ translator can find any classes it must have for type resolution
of variables in your SQLJ source files.

The SQLJ translator can also find classes it needs in uncompiled . j ava files in the
CLASSPATH, if you enable the - checksour ce flag. See "Source Check for Type
Resolution (-checksource)" on page 8-57.

8-2 SQLJ Developer's Guide and Reference

Translator Command Line and Properties Files

Notes:

» Discussion of the SQLJ command line applies only to
client-side translation, not server-side translation. There is a
different mechanism for specifying options to SQLJ in the
server. For information, see "Option Support in the Server
Embedded Translator" on page 11-15.

« Ifyou run the script by entering only sql j , you will receive a
synopsis of the most frequently used SQLJ options. In fact, this
is true whenever you run the script without specifying any files
to process. This is equivalent to using the - hel p flag setting.

SQLJ Options, Flags, and Prefixes

This section discusses options supported by the SQLJ translator. Boolean options are
referred to as flags. Also listed are prefixes, used to pass options to the JVM, which
the SQLJ script invokes, and to the Java compiler and SQLJ profile customizer,
which the JVM invokes.

Use an equals sign (=) to specify option and flag settings, although for simplicity
you do not have to specify =t r ue to turn on a flag—typing the flag name alone will
suffice. You must, however, specify =f al se to turn a flag off—a flag will not toggle
from its previous value. For example:

-1 i nemap=t r ue or just -l i nemap to enable line-mapping

-1 i nemap=f al se to disable line-mapping

Notes Regarding Options Flags and Prefixes

« The names of command-line options, including options passed elsewhere, are
case-sensitive and usually all lowercase. Option values are usually
case-sensitive as well.

« Several options, as indicated in Table 8-1 below, accept alternative syntax if
specified on the command line, to support compatibility with the Oracle
| oadj ava utility.

« Several j avac options are recognized directly by SQLJ if specified on the
command line, as indicated in Table 8-1. All these are passed to your Java
compiler (presumably j avac), and some also affect SQLJ operation.

Translator Command Line and Options 8-3

Translator Command Line and Properties Files

Most SQLJ options can also be set in a properties file. See "Properties Files for
Option Settings" on page 8-13.

The SQLJ_OPTI ONS environment variable can be used in addition to, or
instead of, the command line for setting options. See "SQLJ_OPTIONS
Environment Variable for Option Settings" on page 8-17.

If the same option appears more than once on the command line (or in the
properties file), then the last value is used.

In this document, boolean flags are usually discussed as being t r ue or f al se,
but they can also be enabled/disabled by setting them to yes/no, on/of f ,
1/0.

For an example and discussion of command-line syntax and operations, see
"Command-Line Syntax and Operations" on page 8-10.

Summary of SQLJ Options

Table 8-1 below lists options supported by the SQLJ translator, categorized as
follows:

Flags, options, and prefixes listed as "command-line only" cannot be set in a
properties file.

Flags and options listed as "Basic" are discussed in "Basic Translator Options" on
page 8-19.

Flags, options, and prefixes listed as "Advanced" are discussed in "Advanced
Translator Options" on page 8-48.

Flags and options listed as "Environment" are discussed in "Translator Support
and Options for Alternative Environments" on page 8-64. These flags and
options are for use of a non-standard JVM, compiler, or customizer.

Options listed as "javac Compatible" are j avac options that SQLJ supports and
that are also passed directly to the Java compiler (presumably j avac). These
options are discussed in "Options for javac Compatibility" on page 8-9.

8-4 SQLJ Developer's Guide and Reference

Translator Command Line and Properties Files

Table 8-1 SQLJ Translator Options

Option

Description

Default

Category

-C

-cache

-checkfilename

-checksource

-classpath
(command-line only)

-compile

-compiler-executable

-compiler-encoding-flag

-compiler-output-file

-compiler-pipe-output-flag

prefix that marks options to pass to Java
compiler

flag to enable caching of online
semantics-checking results (to reduce
trips to database)

flag to specify whether a warning is
issued during translation if a source file
name does not correspond to the name of
the public class (if any) defined there

flag to instruct SQLJ type resolution to
examine source files in addition to class
files in certain circumstances

option to specify CLASSPATH to JVM and
Java compiler (passed to j avac)

flag to enable/disable the Java
compilation step (for . j ava files
generated during the current SQLJ run, or
previously generated . j ava files
specified on the command line)

option to specify the Java compiler to use

flag to tell SQLJ whether to pass the
-encoding setting (if that option is set) to
the Java compiler

option to specify a file to which the Java
compiler output should be written

(If this option is not set, then SQLJ
assumes that compiler output goes to
standard output.)

flag instructing SQLJ whether to set

j avac. pi pe. out put system property,
which determines whether the Java
compiler outputs errors and messages to
STDOUT instead of STDERR

option to set output directory for profile
(. ser) files generated by SQLJ and

. ¢l ass files generated by the compiler
(passed to j avac)

n/a

false

true

true

none

true

javac

true

none

true

empty (use directory of
.javafilesfor. cl ass
files; use directory of
.sqlj filesfor. ser
files)

Advanced

Advanced

Environment

Advanced

Basic

Advanced

Environment

Environment

Environment

Environment

Basic

Translator Command Line and Options 8-5

Translator Command Line and Properties Files

Table 8-1 SQLJ Translator Options (Cont.)

Option

Description

Default

Category

-default-customizer
-default-url-prefix
-depend
(command-line only)

-dir

-driver

-encoding

(also recognized as -e if on

command line)

-explain

(command-line only)

-help (also recognized as -h)

-help-long
-help-alias
(all command-line only)

-jdblinemap
-J
(command-line only)

-linemap

-n
(command-line only;
alternatively -vm=echo)

-nowarn
(command-line only)

option to specify the profile customizer to

use; specify a class name

option to set the default prefix for URL
settings

passed to j avac only

option to set output directory for
SQLJ-generated . j ava files

option to specify JDBC driver class to
register; specify a class name or
comma-separated list of class names

option to specify NLS encoding that SQLJ

and the compiler will use (passed to
j avac)

flag to request "cause" and "action"
information to be displayed with
translator error messages

passed to j avac; enables -linemap

flags to display different levels of
information about SQLJ option names,
descriptions, and current values

variant of -linemap option for use with
Sun Microsystems j db debugger

prefix that marks options to pass to the
VM

flag to enable mapping of line numbers
between generated Java class file and
original SQLJ code

flag instructing sql j scriptto echo the
full command line as it would be passed
to the SQLJ translator (including settings
in SQLJ_OPTI ONS), without having the
translator execute it

passed to j avac; sets -warn=none

8-6 SQLJ Developer's Guide and Reference

oracle.sqglj.runtime.util.
OraCustomizer
jdbc:oracle:thin:

n/a

empty (use directory of
.sqlj input file)
oracle.jdbc.driver.

OracleDriver

JVMTfile.encoding
setting

false

n/a

not enabled

false

n/a

false

n/a

n/a

Environment
Basic

j avac
Compatible

Basic

Basic

Basic

Basic

j avac
Compatible

Basic

Basic

Advanced

Basic

Basic

j avac
Compatible

Translator Command Line and Properties Files

Table 8-1 SQLJ Translator Options (Cont.)

Option Description Default Category
-O passed to j avac; disables -linemap n/a javac
(command-line only) Compatible
-offline option to specify offline checker to use for oracle.sqglj.checker. Advanced
semantics-checking; specify a list of fully OracleChecker
qualified class names
-online option to specify online checker to use for oracle.sqglj.checker. Advanced
semantics-checking; specify a fully OracleChecker
qualified class name (you must also set
- user to enable online checking)
-P prefix that marks options to pass to SQLJ n/a Advanced
profile customizer
-passes flag instructing sql j scriptto run SQLJ false Environment

(command-line only)

-password
(also recognized as -p if on
command line)

-profile

-props
(command-line only)

-ser2class

-status
(also recognized as -v if on
command line)

-url

-user
(also recognized as -u if on
command line)

-verbose
(command-line only)

in two separate passes, with compilation

in between

option to set user password for database none
connection for online semantics-checking

flag to enable/disable the profile
customization step (for profile files
generated during current SQLJ run)

option to a specify properties file (an
alternative to the command line for

true

none

setting options); sql j . properties is

also still read

flag to instruct SQLJ to translate

false

generated . ser profilesto . cl ass files

flag requesting SQLJ to display status
messages as it runs

false

option to set database URL for connection jdbc:oracle:oci8:@

for online semantics-checking

option to enable online
semantics-checking and set user name

none (no online
semantics-checking)

(and optionally password and URL) for

database connection

passed to j avac; enables -status

n/a

Basic

Advanced

Basic

Advanced

Basic

Basic

Basic

j avac
Compatible

Translator Command Line and Options 8-7

Translator Command Line and Properties Files

Table 8-1 SQLJ Translator Options (Cont.)

Option Description Default Category
-version flag to display different levels of SQLJ not enabled Basic
-version-long and JDBC driver version information

(both command-line only)

-vim

(command-line only)

-warn

option to specify JVM to use java Environment
comma-separated list of flags to enable or precision Basic

disable different SQLJ warnings; nulls

individual flags are noportable

precision/noprecision, nulls/nonulls, strict

portable/noportable, strict/nostrict, and noverbose
verbose/noverbose; global flag is
all/none

Options for loadjava Compatibility

For compatibility with the | oadj ava utility used to load Java and SQLJ
applications into the Oracle8i server, the following alternative syntax is recognized
for some options when specified on the command line (this is also noted in

Table 8-1 above):

« -e (equivalentto - encodi ng)

« -h(equivalentto - hel p)

« - p (equivalent to - passwor d)

« -u(equivalentto - user)

= -V (for verbose message output; equivalent to - st at us)

To maintain full consistency with | oadj ava syntax, you can use a space instead of
"="in setting these options, as in the following example:

-u scott/tiger -v -e SJIS

For general information about the | oadj ava utility, see the Oracle8i Java Developer’s
Guide.

Note: This alternative option syntax is recognized only on the
command line or in the SQLJ_OPTI ONS environment variable, not
in properties files.

8-8 SQLJ Developer's Guide and Reference

Translator Command Line and Properties Files

Options for javac Compatibility

For compatibility with j avac, the Java compiler supplied with the Sun
Microsystems JDK, the following j avac options are accepted directly by SQLJ
without the - C prefix if specified on the command line. As indicated: some also
serve as SQLJ options; some are not SQLJ options per se, but also set SQLJ options;
some affect j avac only. This is also indicated in Table 8-1 above. Refer to your

j avac documentation for information about j avac option settings and
functionality.

« -classpat h (also a SQLJ option; sets the CLASSPATH for both j avac and the
VM)

See "CLASSPATH for Java Virtual Machine and Compiler (-classpath)" on
page 8-20.

« -d(also aSQLJ option; sets the output directory for . cl ass files and SQLJ
profile files)

See "Output Directory for Generated .ser and .class Files (-d)" on page 8-27.

« -depend (j avac option only; compiles out-of-date files recursively)

« -encodi ng (also a SQLJ option; sets encoding for both SQLJ and j avac)
See "Encoding for Input and Output Source Files (-encoding)" on page 8-26.

« -0 (generatesj avac debugging information; also sets SQLJ - | i nemap=t r ue)
See "Line-Mapping to SQLJ Source File (-linemap)" on page 8-46.

=« - nhowar n (instructs j avac to generate no warnings; also sets SQLJ
-war n=none)

See "Translator Warnings (-warn)" on page 8-42.
« - O(instructs j avac to optimize; also sets SQLJ - | i nemap=f al se)
See "Line-Mapping to SQLJ Source File (-linemap)" on page 8-46.

= -verbose (instructsj avac to output real-time status messages; also sets SQLJ
-status=true)

See "Real-Time Status Messages (-status)" on page 8-44.
Profile Customizer Options

Profile customizer options—options for the customizer harness front end, the
default Oracle customizer, and special customizers for debugging and

Translator Command Line and Options 8-9

Translator Command Line and Properties Files

deployment-time semantics-checking—are documented in "Customization Options
and Choosing a Customizer" on page 10-11.

Command-Line Syntax and Operations

The general sequence of events triggered by running the script sql j was discussed
in "Translation Steps" on page 1-9. This section will add some operational details to
that discussion, as part of this overview of the command line.

Use of Command-Line Arguments
Recall the typical general syntax for the command line:

sqlj <optionlist> filelist

When the sql j script invokes a JVM, it passes all of its command-line arguments to
the JVM, which later passes them elsewhere (such as to the Java compiler or profile
customizer), as appropriate.

Arguments from the Option List Option list arguments are used in the following ways:

« Options designated by the - J prefix are JVM options and are used by the VM
directly. Such options must be specified on the command line or in the
SQLJ_OPTI ONS environment variable.

« Options not designated by the - J, - C, or - P prefixes are SQLJ options and are
passed to the SQLJ translator as the JVM invokes it.

« Options designated by the - C prefix are Java compiler options and are passed to
the compiler as the JVM invokes it.

Note that three SQLJ options have the same name as Java compiler options and,
if specified, are automatically passed to the Java compiler, as well as being used
by SQLJ:

— -disused by SQLJ to specify the output directory for its generated profile
files and is also passed to the compiler, which uses it to specify the output
directory for its generated . cl ass files.

— -encodi ng is used by SQLJ in reading . sql j filesand generating . j ava
files and is also passed to the Java compiler (unless the
-conpi | er - encodi ng- f | ag is off), which uses it in reading . j ava files.

— -cl asspat h is passed by SQLJ to both the Java compiler and the JVM to
set the CLASSPATH for both. It must be specified on the command line or in
the SQLJ_OPTI ONS environment variable.

8-10 SQLJ Developer’s Guide and Reference

Translator Command Line and Properties Files

Do not use the - C prefix to specify the - d or - encodi ng compiler options.
Note that this also means that SQLJ and the compiler use the same settings for
- d and - encodi ng.

You must use the - C prefix (and the - J prefix) for - cl asspat h if you want to
set different CLASSPATH values for the Java compiler and for the JVM that runs
SQLJ.

« Options designated by the - P prefix are SQLJ profile customizer options and
are passed to the customizer as the JVM invokes it.

Any profile customization other than what SQLJ performs automatically is
considered an advanced feature and is covered in Chapter 10, "Profiles and
Customization".

Arguments from the File List The SQLJ front end parses the file list, processes wildcard
characters, and expands file names. By default, files are processed as follows:

« .sqlj filesare processed by the SQLJ translator, Java compiler, and SQLJ
profile customizer.

« . javafiles are processed by the Java compiler and are also used by the SQLJ
translator for type resolution.

« .ser profilesand . j ar files are processed only by the profile customizer.

Note that you can specify . sqgl j files together with . j ava files on the command
line, or you can specify . ser files together with . j ar files, but you cannot mix the
two categories. (See "Use of JAR Files for Profiles" on page 10-36 for details about
how . j ar files are processed.)

If you have . sql j filesand . j ava files with interdependencies (each requiring
access to code in the others), then enter them all on the command line for a single
execution of SQLJ. You cannot specify them for separate executions of SQLJ,
because then SQLJ would be unable to resolve all the types.

Note: As an alternative to entering . j ava file names on the
command line, you can enable the - checksour ce option and then
just be sure that the . j ava files are in the CLASSPATH. See "Source
Check for Type Resolution (-checksource)" on page 8-57.

Processing to Avoid Source Conflicts The SQLJ translator takes steps to try to prevent
having multiple source files define the same class in the same location. If your
command-line file list includes multiple references to the same . sql j or.j ava

Translator Command Line and Options 8-11

Translator Command Line and Properties Files

file, all but the first reference are discarded from the command line. In addition, if
you lista. j ava fileand . sql j file with the same base name and in the same
location without using the - di r option, only the . sqgl j file is processed. This
processing also applies to wild-card file name characters.

Consider the following command-line examples, presuming that your current
directory is/ myhone/ nypackage, which contains the files Foo. sql j and
Foo. java:

« sqglj Foo.sqlj /myhone/nypackage/ Foo. sqlj

These both refer to the same file, so the translator discards
/ myhone/ nypackage/ Foo. sqgl j from the command line.

« sqlj Foo.sqlj Foo.java

This would result in the translator both writing to and reading from Foo. j ava
in the same execution, so the translator discards Foo. j ava from the command
line.

« sqglj Foo.*

The translator would find both Foo. sql j and Foo. j ava, which again would
cause it to both write to and read from Foo. j ava in the same execution. Again,
the translator discards Foo. j ava from the command line.

« sqlj -dir=outdir Foo.sqlj Foo.java

This is okay, because the generated Foo. j ava will be inthe out di r
subdirectory, while the Foo. j ava being read is in the / myhome/ mypackage
directory.

This processing of the command line means that you can, for example, type the
following command and have it execute without difficulty (with file references
being automatically discarded as necessary):

sqlj *.sqglj *.java

This is convenient in many situations.

Command-Line Example and Results

Below is a sample command line. This example uses some advanced concepts more
fully explained later in this chapter, but is presented in the interest of showing a
complete example of command-line syntax.

sqlj -J-Duser.language=ja -warn=none -J-prof -encodi ng=SJI S *Bar.sqlj Foo*.java

8-12 SQLJ Developer’s Guide and Reference

Translator Command Line and Properties Files

The sql j script invokes a JVM, passes it the class name of the SQLJ translator, then
passes it the command-line arguments (which later passes them to the translator,
compiler, and customizer, as appropriate). If there are any options for the JVM, as
designated by - J, the script passes them to the JVM ahead of the translator class file
name (just as you would type Java options prior to typing the class file name if you
were invoking Java by hand).

After these steps are completed, the results are equivalent to the user having typed
the following (presuming Sushi Bar . sql j , Di veBar. sql j , FooBar . j ava, and
FooBaz. j ava were all in the current directory):

java -Duser. | anguage=j a -prof sqlj.tools.Sglj -warn=none -encodi ng=SJI S
Sushi Bar.sqlj D veBar.sqlj FooBar.java FooBaz.java
(This is one wrap-around command line.)

For more information about how JVM options are handled, see "Options to Pass to
the Java Virtual Machine (-J)" on page 8-48.

Echoing the Command Line without Executing

You can use the SQLJ - n option (or, alternatively, - vim=echo) to echo the command
line that the sql j script would construct and pass to the SQLJ translator, without
executing it. This includes settings in the SQLJ_OPTI ONS environment variable as
well as on the command line, but does not include settings in properties files.

For more information, see "Command Line Echo without Execution (-n)" on
page 8-24.

Properties Files for Option Settings

You can use properties files, instead of the command line, to set options for the SQLJ
translator, Java compiler, and SQLJ profile customizer.

In addition, if your Java compiler will be running in a separate JVM, and you want
to specify options to this JVM regarding operation of the compiler, then you can use
properties files to supply such options. Such options are passed to the JVM at the
time the compiler is run, after the SQLJ translation step. (It is more typical, however,
to pass options to the compiler’s JVM by using the command-line - C- J prefix.)

You cannot use properties files to set the following SQLJ options, flags, and prefixes:
« -classpath

« -help,-help-long,-help-alias,-C help,-P-help

Translator Command Line and Options 8-13

Translator Command Line and Properties Files

- -J

« -n

=« -passes

« -props

« -version,-version-long
= -Vm

It is not possible to use properties files to specify options to the JVM, for example,
because properties files are read after the JVM is invoked.

You also cannot do the following in properties files:
« setj avac options supported by SQLJ (- depend, - g, - nowar n, - O, - ver bose)

= Use option abbreviations recognized on the command line for compatibility
with | oadj ava(-e,-h,-p,-u,-v)

Notes: Discussion of SQLJ properties files applies only to
client-side SQLJ, not server-side SQLJ. There is a different
mechanism for specifying options to SQLJ in the server. For
information, see "Option Support in the Server Embedded
Translator" on page 11-15.

Properties File Syntax

Option settings in a properties file are placed one per line. Lines with SQLJ options,
compiler options, and customizer options can be interspersed. (They are parsed by
the SQLJ front end and processed appropriately.)

Syntax for the different kinds of options is as follows:

« Each SQLJ option is prefixed by sql j . (including the period), instead of an
initial hyphen; only options that start with sql j . are passed to the SQLJ
translator. For example:

sql j . war n=none
sqlj.linenap=true

« Each Java compiler option is prefixed by conpi | e. (including the period),
instead of - C- ; only options that start with conpi | e. are passed to the Java
compiler. For example:

8-14 SQLJ Developer’s Guide and Reference

Translator Command Line and Properties Files

conpi | e. ver bose
(The Java compiler - ver bose option outputs status messages during the
compile.)

General profile customization options (that apply regardless of the particular
customizer you are using) are prefixed by pr of i | e. (including the period),
instead of - P- ; only options that start with prof i | e. are passed to the profile
customizer. For example:

profil e. backup

(The profile customizer backup option saves a copy of the previous profile.)

You can also specify options to a particular customizer by using pr of i | e. Cas
follows:

profil e. Gsurmary
(For the Oracle customizer, the summar y option displays a summary of the
Oracle features used.)

Any profile customization other than the default Oracle customization is
considered an advanced feature and is covered in Chapter 10, "Profiles and
Customization".

Comment lines start with a pound sign (#). For example:

Comment |ine.

Blank lines are also permitted.

As on the command line, a flag can be enabled/disabled in a properties file with
=t rue/=f al se, =on/=of f, =1/=0, or =yes/=no. A flag can also be enabled
simply by entering it without a setting, such as the following:

sqlj.linenap

Note: Always use the equals sign (=) in your option settings in a
properties file, even though some options (such as - user,

- passwor d, and - ur |) allow use of a space instead of "=" on the
command line.

Properties File: Simple Example The following are sample properties file entries:

Translator Command Line and Options 8-15

Translator Command Line and Properties Files

Set user and JDOBC dri ver
sql j . user=scott
sqlj.driver=oracle.jdbc.driver.Qacl elxi ver

Turn on the conpil er verbose option
conpi | e. ver bose

These entries are equivalent to having the following on the SQLJ command line:

sqglj -user=scott -driver=oracle.jdbc.driver.Qaclelriver -G verbose

Properties File: Non-Default Connection Context Classes Following is a sample properties
file that specifies settings for a connection context class that you declared:

JDBC dri ver
sqlj.driver=oracle.jdbc.driver.Qacl elxi ver

Oracl e 8.0.4 on spock. nat decsys. com

sql j . user @our ceCont ext =sde

sql j . passwor d@our ceCont ext =f or now

sql j . url @our ceCont ext =j dbc: or acl e: t hi n: @07. 67. 155. 3: 1521: nds

Warning settings
sqlj . warn=al |

Cache
sql j . cache=on

Default Properties Files

Regardless of whether a properties file is specified in the SQLJ command line, the
SQLIJ front end looks for files named "sqglj.properties”. It looks for them in the Java
home directory, the user home directory, and the current directory, in that order. It
processes each sql j . properti es fileit finds, overriding previously set options as
it encounters new ones. Thus, options set in the sql j . properti es file in the
current directory override those set in the sqgl j . proper ti es file in the user home
directory or Java home directory.

Also see "Order of Precedence of Option Settings" on page 8-17.

8-16 SQLJ Developer’s Guide and Reference

Translator Command Line and Properties Files

SQLJ_OPTIONS Environment Variable for Option Settings

Oracle SQLJ supports use of an environment variable called SQLJ_OPTI ONS as an
alternative to the command line for setting SQLJ options. Any option referred to as
"command-line only", meaning it cannot be set in a properties file, can also be set
using the SQLJ_OPTI ONS variable.

You can use the SQLJ_OPTI ONS variable to set any SQLJ option, but it is intended
especially for option settings to be passed to the JVM. And it is particularly useful
for command-line-only options, such as - cl asspat h, that you use repeatedly with
the same setting.

Following is an example of a SQLJ_OPTI ONS setting:
-vn¥E vi ew - J-verbose
When you use SQLJ_OPTI ONS, SQLJ effectively inserts the SQLJ_OPTI ONS

settings, in order, at the beginning of the SQLJ command line, prior to any other
command-line option settings.

Note: How to set environment variables is specific to your
operating system. There can also be OS-specific restrictions. For
example, in Windows 95 you use the Envi r onnent tab in the
Syst emcontrol panel. Additionally, since Windows 95 does not
support the "=" character in variable settings, SQLJ supports the use
of "#" instead of "=" in setting SQLJ_OPTI ONS. Consult your
operating system documentation.

Order of Precedence of Option Settings

SQLJ takes option settings in the following order. At each step, it overrides any
previous settings for any given option.

1. Sets options to default settings (where applicable).

2. Looksforasglj.properti es filein the Java home directory; if one is found,
sets options as specified there.

3. Looksforasqlj.properties filein the user home directory; if one is found,
sets options as specified there.

4. Looksforasqlj . properti es fileinthe current directory; if one is found, sets
options as specified there.

Translator Command Line and Options 8-17

Translator Command Line and Properties Files

5. Looks for option settings in the SQLJ_OPTI ONS environment variable and

effectively prepends them to the beginning of the command line. Sets options as

specified in SQLJ_OPTI ONS.

6. Looks for option settings on the command line; options are set as specified

there. When SQLJ processes the command line, it looks in any file specified by

the - pr ops option and sets options as specified there.

Notes:

Insql j.properti es files, SQLJ reads option settings from
top to bottom, with later entries taking precedence over earlier
entries.

If there is a properties file specified by the - pr ops option on
the command line, SQLJ inserts the file’s option settings into
the position on the command line where the - pr ops option

was specified.

Options on the command line, with options from a - pr ops file
inserted, are read in order from left to right. Any later
(right-hand) setting takes precedence over earlier (left-hand)
settings.

Example Presume SQLJ is run as follows:

sqlj -user=scott -props=nyprops.properties -dir=/hone/java

And presume the file mypr ops. properti es isin the current directory and
contains the following entries:

sql j . user =t ony
sql j . di r=/ hone/ nyj ava

These settings are processed as if they were inserted into the command line where
the - pr ops option was specified. Therefore, the t ony entry takes precedence over
the scot t entry for the user option, but the / hone/ j ava entry takes precedence

over the / home/ nyj ava entry for the di r option.

8-18 SQLJ Developer’s Guide and Reference

Basic Translator Options

Basic Translator Options

This section documents the syntax and functionality of the basic flags and options
you can specify in running SQLJ. These options allow you to run in a fairly
standard mode of operation. For options that can also be specified in a properties
file (such assql j . properti es), that syntax is noted as well (see "Properties Files
for Option Settings" on page 8-13).

More advanced command-line flags and options are discussed in "Advanced
Translator Options" on page 8-48 and "Translator Support and Options for
Alternative Environments" on page 8-64.

Basic Options for Command Line Only

The following basic options can be specified only on the SQLJ command line or,
equivalently, in the SQLJ_OPTI ONS environment variable. They cannot be specified
in properties files.

=« -props

« -classpath

« -help,-help-long,-help-alias,-P-help,-Chelp
« -version,-version-long

= -n

The command-line-only flags (the - hel p flags, - ver si on flags, and - n) do not
support =t r ue syntax. Enable them by typing only the flag name, as in the
following example:

supported: sqlj -version-long ...

not supported: sql j -version-long=true ...

Note: Additionally, there are advanced options, flags, and prefixes
that can be set only on the command line or in SQLJ_OPTI ONS:
-J,-passes,and-vm

Input Properties File (-props)
The - pr ops option specifies a properties file from which SQLJ can read option
settings (an alternative to specifying option settings on the command line).

Translator Command Line and Options 8-19

Basic Translator Options

See "Properties Files for Option Settings" on page 8-13 for information about the
format of these files, the details of how they are used in relation to command-line
options, and where SQLJ looks for default properties files.

Command-line syntax - props=fi/ enane
Command-line example - pr ops=nypr ops. properties
Properties file syntax n/a

Properties file example n/a

Default value none

CLASSPATH for Java Virtual Machine and Compiler (-classpath)

For compatibility with the syntax of most JVMs and compilers, SQLJ recognizes the
- cl asspat h option if it is specified on the command line. In setting this option,
you can use either a space, as with most JVMs or compilers, or "=", as with other
SQLJ options. The following examples (both on Solaris) demonstrate this:

-cl asspat h=. : ./ cl asses: / vobs/ dbj ava/ cl asses/ cl asses111. zi p: /j dbc- 1. 2. zi p

or:

-classpath .:./classes:/vobs/dbj ava/ cl asses/ cl asses11l. zi p:/j dbc- 1. 2. zi p

The - cl asspat h option sets the Java CLASSPATH for both the JVM and the Java
compiler. If you do not want to use the same CLASSPATH for both, set them
separately using the SQLJ - J and - C prefixes, described in "Prefixes that Pass
Option Settings to Other Executables" on page 8-48.

Note: As with other options described later in this chapter, if you
do use "="in setting the - cl asspat h option, then it is stripped out
when the option string is passed to the JVM and compiler. This is
because JVMs and compilers do not support the "=" syntax in their
option settings.

Command-line syntax sqlj -cl asspat h=<c/ ass_pat h>

Command-line example sqglj -classpath=/j dbc- 1. 2. zi p: / cl asses/ bi n

8-20 SQLJ Developer’s Guide and Reference

Basic Translator Options

Properties file syntax n/a
Properties file example n/a

Default value none

SQLJ Option Information (-help)

The following three settings of the - hel p flag, specified on the command-line,
instruct SQLJ to display varying levels of information about SQLJ options:

« -help
« -help-long
« -help-alias

You can enable this option by typing the desired setting on the command line as in
the following examples:

sqlj -help

or:

sqlj -hel p-1ong

or:

sqlj -hel p-alias

No input-file translation is performed when you use the - hel p flag in any of these
forms, even if you include file names and other options on the command line as
well. SQLJ assumes that you either want to run the translator or you want help, but
not both.

You can also receive information about the profile customizer or Java compiler,
requesting help through the - P and - C prefixes as in the following examples. These
prefixes are discussed in "Prefixes that Pass Option Settings to Other Executables"
on page 8-48. As with the - hel p flag, no translation is performed if you request
customizer or compiler help.

sqlj -P-help
sqlj -Ghelp

As with other command-line-only flags, - hel p (as well as - P- hel p and - C- hel p)
does not support =t r ue syntax. Enable it by typing only the desired flag setting.

Translator Command Line and Options 8-21

Basic Translator Options

Notes:

« For compatibility with the | oadj ava utility, - h is recognized
as equivalent to - hel p when specified on the command line.
See "Options for loadjava Compatibility" on page 8-8.

= You can use multiple - hel p flag settings on the same
command line, including - P- hel p and - C- hel p.

« Although - P and - Csettings can generally be set in properties
files, - P- hel p and - C- hel p are command-line-only.

« Helpisalso provided if you run SQLJ without specifying any
files to process. This is equivalent to using the - hel p setting.

The -help Setting The most basic level of help is achieved by specifying the - hel p
setting. This provides the following:

« asynopsis of the most frequently used SQLJ options

« alisting of the additional - hel p flag settings available

The -help-long Setting This setting provides a complete list of SQLJ option
information, including the following for each option:

= option name

= option type (the Java type that the option takes as input, such asi nt or
String)

« description
« current value

« how the current value was set (from command line, from properties file, or by
default)

Note: Itis often useful to include other option settings on the
command line with a - hel p- | ong option, especially with complex
options (such as - war n) or combinations of options, so that you can
see what option settings resulted from your actions. (The

- hel p- | ong mode displays current settings of all options.)

8-22 SQLJ Developer’s Guide and Reference

Basic Translator Options

The -help-alias Setting This setting provides a synopsis of the command-line
abbreviations supported for compatibility with the | oadj ava utility.

Command-line syntax sqlj help flag settings

Command-line examples
sqlj -help
sqlj -help -hel p-alias
sqlj -hel p-1ong
sglj -warn=none, null -hel p-1ong
sqlj -hel p-alias

Properties file syntax n/a
Properties file example n/a

Default value none

SQLJ Version Number (-version)

The following settings of the - ver si on flag, specified on the command-line,
instruct SQLJ to display varying levels of information about SQLJ and JDBC driver
versions:

« -version
« -version-long

You can enable this option by typing the desired setting on the command line as in
the following examples:

sqlj -version

or:
sqlj -version-long

No input-file translation is performed when you use the - ver si on option, even if
you include file names and other options on the command line. SQLJ assumes that

you either want to run the translator or you want version information, but not both.
Properties files and anything else you type on the command line are ignored.

As with other command-line-only flags, - ver si on does not support =t r ue syntax.
Enable it by typing only the flag name.

Translator Command Line and Options 8-23

Basic Translator Options

The -version Setting The - ver si on setting displays the SQLJ release number, such as
"Oracle SQLJ 8.1.6".

The -version-long Setting The - ver si on- | ong setting displays SQLJ release and
build version information and the JDBC driver release number if one can be found.
For example, if an Oracle JDBC driver is used, this option would display something
such as "Oracle JDBC version 8.1 (8.1.6.0.0)".

Command-line syntax sqlj version flag settings

Command-line example
sqglj -version
sqlj -version -version-1long
sqlj -version-long

Properties file syntax n/a
Properties file example n/a

Default value none

Command Line Echo without Execution (-n)

The - n flag, specified on the command line, instructs the sql j script to construct
the full command line that would be passed to the SQLJ translator, including any
SQLJ_OPTI ONS settings, and echo it to the user without having the SQLJ translator
execute it. This includes capturing and echoing the name of the JVM that would be
launched to execute the SQLJ translator and echoing the full class name of the
translator. This does not include settings from properties files.

This is useful in showing you the following:

« the fully expanded form of any options you abbreviated (such as - u and other
abbreviations supported for | oadj ava compatibility)

« the order in which options would be placed when the overall command string
is constructed and passed to the translator

= possible conflicts between SQLJ_OPTI ONS settings and command-line settings

The - n option can appear anywhere on the command line or in the SQLJ_OPTI ONS
variable.

As with other command-line-only flags, - n does not support =t r ue syntax. Enable
it by typing only the flag name.

8-24 SQLJ Developer’s Guide and Reference

Basic Translator Options

Consider the following sample scenario:
= You have the following setting for SQLJ_OPTI ONS:

- user =scott/ ti ger @dbc: or acl e: t hi n: @- cl asspat h=/ nycl asses/ bi n
= You enter the following command line:
%sqlj -n -e SIS nyapp. sql j

You would see the following echo:

java -classpath /nycl asses/bin sqlj.tools.Sqlj
-user =scott/tiger @dbc: oracl e: t hi n: @- G cl asspat h=/ nycl asses/ bi n -encodi ng=SJI S
nyapp. sql j

(This is all one wrap-around line.)

Note:
= Asan alternative to - n, you can use the - vim=echo setting.

« Another effective way to check option settings is to use the
- hel p- | ong flag. This displays current settings for all options,
including other options you set on the command line as well as
settings in properties files and in SQLJ_OPTI ONS. See "SQLJ
Option Information (-help)" on page 8-21.

Command-line syntax -n
Command-line example -n
Properties file syntax n/a
Properties file example n/a
Default value fal se
Options for Output Files and Directories
The following option specifies encoding for SQLJ input and output source files:

« -encoding

These options specify where SQLJ output files are placed:

Translator Command Line and Options 8-25

Basic Translator Options

« -d
« -dir

Encoding for Input and Output Source Files (-encoding)

The - encodi ng option specifies NLS encoding to be appliedto . sql j and . j ava
input files and . j ava generated files. For compatibility with j avac, you can use
either a space or "=" in setting this option on the command line, as in the following
examples:

-encodi ng=SJI S
-encoding SJI'S

If setting sql j . encodi ng in a properties file, however, use "=", not a space.

When this option is specified, it is also passed to the Java compiler (unless the
-conpi | er - encodi ng- f | ag is off), which uses it to specify encoding for . j ava
files processed by the compiler.

Notes:

« Aswith the - cl asspat h and - d options described below, if
you do use an "=" in setting the - encodi ng option, then it is
stripped out when the option string is passed to the JVM and
compiler. This is because JVMs and compilers do not support
the "=" syntax in their option settings.

« For compatibility with the | oadj ava utility, - e is recognized
as equivalent to - encodi ng when specified on the command
line. See "Options for loadjava Compatibility" on page 8-8.

« The-encodi ng option does not apply to Java properties
files—sql j . properti es and connect . properti es, for
example. Properties files always use the encoding 8859_1. This
is a feature of Java in general, not SQLJ in particular. You can,
however, use Unicode escape sequences in a properties file.
(You can use the nat i ve2asci i utility to create escape
sequences for a natively encoded file—see "Using native2ascii
for Source File Encoding" on page 9-26.)

Command-line syntax -encodi ng=Java_char act er_encodi ng

8-26 SQLJ Developer’s Guide and Reference

Basic Translator Options

Command-line example -encodi ng=SJI S
Properties file syntax sql j . encodi ng=Java_char act er_encodi ng
Properties file example sqlj . encodi ng=SJI S

Default value setting in JVM system property fi | e. encodi ng

Output Directory for Generated .ser and .class Files (-d)

The - d option specifies the root output directory for profiles generated by the SQLJ
translator and is also passed to the Java compiler to specify the root output
directory for . cl ass files generated by the compiler. Whether profiles are
generated as . ser files (default) or . cl ass files (if the - ser 2cl ass option is
enabled) is irrelevant in using the - d option. (For information about - ser 2cl ass,
see "Conversion of .ser File to .class File (-ser2class)" on page 8-56.)

Whenever a directory is specified, the output files are generated under this
directory according to the package name, if applicable. For example, if you have
source files in package a. b. ¢ and specify directory / nydi r, output files will be
placed in directory / mydi r/ a/ b/ c.

If you specify a relative directory path, this will be from your current directory.

For compatibility with j avac, you can use either a space or "="in setting this
option on the command line, as in the following examples (both of which make
/ r oot the root directory for generated profile files):

-d=/r oot

-d /root

If setting - d in a properties file, however, use "=", not a space (for example,
sqlj.d=/root).

If your current directory is / r oot / hone/ nmydi r and you set the - d option to the
relative directory path mysubdi r/ nyot her subdi r as follows, then

[root/ hone/ nydi r/ mysubdi r/ myot her subdi r will be the root directory for
generated profile files:

- d=nysubdi r/ nyot her subdi r
You can also use standard syntax such as a period for the current directory or two

periods to go up a level (the second example immediately below will go up a level,
then back down to a parallel directory called par al | el di r):

Translator Command Line and Options 8-27

Basic Translator Options

-d=

-d=../paralleldir

If the - d option is empty or not specified, then . cl ass filesand . ser files
generated by the translation process will be placed as follows:

« A.classfilecorresponding to a . j ava file that was generated by the
translator is placed in the same directory as the generated . j ava file, which is
according to the - di r option.

« A.class file corresponding to a . j ava file that you specified on the
command line will be placed in the same directory as the . j ava file.

« A.ser fileis placed in the same directory as the . sql j source file from which
it resulted.

Notes:

= You can specifically set - d to be empty (to override settings in a
properties file, for example) as follows:

-d=

« Throughout this discussion, the forward-slash (/) was used as
the file separator. It is important to note, however, that in
specifying this or similar options, you must actually use the file
separator of your operating system, as specified in the
file.separator system property of your JVM.

« Aswiththe - cl asspat h and - encodi ng options described
above, if you do use an "=" in setting the - d option, then it is
stripped out when the option string is passed to the JVM and
compiler. This is because JVMs and compilers do not support
the "=" syntax in their option settings.

Command-line syntax -d=directory path
Command-line example -d=/topl evel dir/ nydir
Properties file syntax sqlj.d=directory _pat h

Properties file example sqlj . d=/t opl evel di r/ nydir

8-28 SQLJ Developer’s Guide and Reference

Basic Translator Options

Default value none (. cl ass files go with . j ava files; . ser files go with . sql j files)

Output Directory for Generated .java Files (-dir)

The - di r option specifies the root directory for . j ava files generated by the SQLJ
translator.

Whenever a directory is specified, the output files are generated under this
directory according to the package name, if applicable. For example, if you have
source files in package a. b. ¢ and specify directory / nydi r, then output files will
be placed in directory / nydi r/ a/ b/ c.

If you specify a relative directory path, it will be from your current directory.

A simple example is as follows, which will make/ r oot the root directory for
generated . j ava files:

-di r=/root
If your current directory is/ r oot / hone/ mydi r and you set the - di r option to the
relative directory path mysubdi r/ nyot her subdi r as follows, then

[root/ hone/ nydi r/ mysubdi r/ myot her subdi r will be the root directory for
generated . j ava files:

- di r=nysubdi r/ nyot her subdi r
You can also use standard syntax such as a period for the current directory or two

periods to go up a level (the second example immediately below will go up a level,
then back down to a parallel directory called par al | el di r):

-dir=
-dir= ./paralleldir

If the - di r option is not specified, then files are generated under the same directory
as the original . sql j source file (not under the current directory).

If you specifically want the output directory to be the same as your . sql j source
directory (perhaps overriding other - di r settings, such as in properties files), then
you can use the - di r option as follows:

-dir=

Translator Command Line and Options 8-29

Basic Translator Options

Notes:

« If you specify the - di r option but not the - d option, then
generated . cl ass files will also be placed in the directory
specified by - di r, but generated . ser files will be placed in
the directory of the . sql j file.

« Throughout this discussion, the forward-slash (/) was used as
the file separator. Be aware, however, that in specifying this or
similar options, you must use the file separator of your
operating system, as specified inthefi | e. separ at or system
property of your JVM.

Command-line syntax -dir=directory path
Command-line example -dir=/topl evel dir/nydir
Properties file syntax sqlj.dir=directory path
Properties file example sqlj . dir=/topl evel dir/nydir

Default value none (use directory of . sql j source file)

Connection Options

You can use the following options for the database connection for online
semantics-checking:

= -user
« -password

« -url

« -default-url-prefix
« -driver

There is no requirement that the SQLJ translator connect to the same database or
schema as the application does at runtime. The connection information in
application source code can be independent of the connection information in the
SQLJ options.

8-30 SQLJ Developer’s Guide and Reference

Basic Translator Options

A situation where you will probably want to use a different connection for
translation than for runtime is if you are developing in a different environment than
the one to which you will deploy.

Online Semantics-Checking and User Name (-user)

Simple semantics-checking not involving a database connection is referred to as
offline checking. The more thorough semantics-checking requiring a database
connection is referred to as online checking. Online checking offers one of the prime
advantages of the SQLJ strong-typing paradigm—type incompatibilities that would
normally result in runtime SQL exceptions are caught during translation, before
users ever run the application.

The - user option enables online semantics-checking and specifies the user name
(schema name) for the exemplar schema, which is the sample database schema that
you provide to the translator for it to use in performing the checking. You can also
use the - user option to specify the password and URL, as opposed to using the

- passwor d and - ur | options separately.

Note that there is no other flag to enable or disable online semantics-checking; SQLJ
enables it or disables it according to the presence or absence of the - user option.

Discussion of the - user option is split into two categories—1) effect of - user
when you are employing the default connection context class only; and 2) effect of

- user when you are employing non-default or multiple connection context classes.
Non-default connection context classes are discussed in "Connection Contexts" on
page 7-2.

General discussion of connection considerations, such as when to use multiple
instances of the Def aul t Cont ext class and when to declare additional connection
context classes, is in "Connection Considerations" on page 4-8.

Translator Command Line and Options 8-31

Basic Translator Options

Notes:

« For compatibility with the | oadj ava utility, - u is recognized
as equivalent to - user when specified on the command line.
See "Options for loadjava Compatibility" on page 8-8.

= User names cannot contain the characters "/" or "@".

= You are allowed to use a space instead of "="in a user name
setting on the command line, as in the following examples:

-user scott/tiger
-user @t xd ass scott/tiger
-u scott/tiger

-u@ xd ass scott/tiger

« Ifapassword contains the character "@", then you cannot set
the password through the - user option. You must use
separate - user and - passwor d settings.

Effect of -user When Using Default Connection Context Class Only The most basic usage of
the - user option is as follows:

-user=scott
When you are using only the default connection or other instances of the

Def aul t Cont ext class, such a setting will apply to all your SQLJ executable
statements. This example results in online checking against the scot t schema.

You can also specify the password, URL, or both along with the user name, using
syntax as in the following examples (with "/" preceding the password and "@"
preceding the URL):

- user =scott/tiger

or:

- user=scott @dbc: oracl e: oci 8: @

or:

- user =scott/tiger @dbc: or acl e: oci 8: @

Otherwise the URL can be specified through the - ur | option, and the password
can be specified interactively or through the - passwor d option.

8-32 SQLJ Developer’s Guide and Reference

Basic Translator Options

You can disable online semantics-checking by setting the - user option to an empty
string:

-user=

Again, when you are using only the default connection or other instances of the
Def aul t Cont ext class, this will apply to all your SQLJ executable statements.

Disabling online semantics-checking is useful, for example, if you have online
checking enabled in a properties file but want to override that on the command line,
or have it enabled in the default properties file but want to override that in a
user-specified properties file (specified using the - pr ops option).

There is also a special user name, URL. CONNECT, which you can use when the URL
specifies the user and password as well as the other details of the database
connection. To see what the URL would look like in such a case, see "Connection
URL for Online Semantics-Checking (-url)" on page 8-37.

Effect of -user When Using Non-Default or Multiple Connection Context Classes If you
declare and use additional connection context classes in your application, then you
can specify - user settings for the testing of SQLJ executable statements that use
instances of those classes. Specify a user name for online checking against a
particular connection context class as follows:

-user @ xd ass=scot t
This results in online checking against the scot t schema for any of your SQLJ

executable statements that specify a connection context instance of the class
Ct xCl ass.

As with the default connection context class, you can also specify the password or
URL in your - user setting for a particular connection context class, as in the
following example:

-user @t xd ass=scott/tiger @dbc: or acl e: oci 8: @
The Ct xCl ass connection context class must be declared in your source code or

previously compiled into a . cl ass file. (See "Connection Contexts" on page 7-2 for
more information.)

Employ the - user option separately for each connection context class for which
you want to enable online checking and set a user name; these settings have no
influence on each other:

-user @ xd assl=user1 -user @ xd ass2=user 2 -user @ xd ass3=user 3

Translator Command Line and Options 8-33

Basic Translator Options

When you are using multiple connection context classes in your application, a

- user setting that does not specify a class will apply to the Def aul t Cont ext class
as well as to all classes for which you do not otherwise specify a - user setting.
Presumably, though, you will specify a - user setting for each connection context
class, given that different connection context classes are typically intended for use
with different sets of SQL objects.

Consider a situation where you have declared connection context classes
Ct xC ass1, Ct xC ass2,and Ct xCl ass3 and you set - user as follows:

-user @ xd ass2=scott/tiger -user=bill/lion

Any statement in your application that uses an instance of Ct xCl ass2 will be
checked against the scot t schema. Any statement that uses an instance of

Def aul t Cont ext, Ct xCl ass1, or Ct xCl ass3 will be checked against the bi | |
schema.

In addition, once you enable online checking by setting the - user option, you can
disable online checking for a particular connection context by setting the - user
option again with an empty user name for that connection context. For example,
after semantics checking is enabled, the following setting disables it for connection
context Ct XxCl ass2:

-user @ xd ass2=

This disables online semantics-checking for any SQLJ executable statements that
specify a connection object that is an instance of Ct xCl ass2.

To disable online semantics-checking for the default connection context class and
any other connection context classes for which you do not specify a user name:

-user=

Command-line syntax -user<@onn_cont ext _cl ass>=user nane</ passvor d><@ir | >

Command-line examples
- user =scot t
- user =scott/tiger
- user=scott @dbc: oracl e: oci 8: @
-user =scott/tiger @dbc: or acl e: oci 8: @
-user=
-user =URL. GCONNECT
- user @ont ext =scot t/ti ger
- user @ont ext =

8-34 SQLJ Developer’s Guide and Reference

Basic Translator Options

Properties file syntax sql j . user <@onn _cont ext_cl ass>=user nane</ passvor d><@ir | >

Properties file examples
sql j . user=scott
sql j . user=scott/tiger
sql j . user=scott @dbc: oracl e: oci 8: @
sql j . user=scott/tiger @dbc: oracl e: oci 8: @
sqlj . user=
sql j . user =URL. CONNECT
sql j . user @ xd ass=scott/tiger
sql j . user @ xd ass=

Default value none (no online semantics-checking)

Note: Be aware of the difference in format between specifying
user, password, and URL in the - user option and specifying them
in the - ur | option. (In the - ur | option, the user name and
password are included in the URL, immediately following the
JDBC driver type; in the - user option they precede the URL.) Also
see "Connection URL for Online Semantics-Checking (-url)" on
page 8-37.

User Password for Online Semantics-Checking (-password)

The - passwor d option specifies the user password for the database connection for
online semantics-checking. For the - passwor d setting to be meaningful, the - user
option must also be set .

You can also specify the password as part of the - user option setting. (See "Online
Semantics-Checking and User Name (-user)" on page 8-31.) Do not use the

- passwor d option for a connection context class if you have already set its
password in the - user option, which takes precedence.

For the most part, functionality of the - passwor d option parallels that of the

- user option. That is, if your application uses only the default connection or other
instances of Def aul t Cont ext , the following will set the password for the schema
to be used in checking all of your SQLJ statements:

- passwor d=t i ger

If you declare and use additional connection context classes, Ct xCl ass1 for
example, then you will presumably employ the - user option to specify additional
exemplar schemas to use in testing statements that use those connection context

Translator Command Line and Options 8-35

Basic Translator Options

classes. Similarly, use the - passwor d option to specify passwords for those
schemas, as in the following example:

- passwor d@ xd assi1=ti ger

A connection context class without a password setting, either through the

- passwor d setting or the - user setting, uses the password setting for the default
connection context class. If you set no password for the default connection context
class, then SQLJ prompts you interactively for that password. If you also set no
password for a user-defined connection context class, then SQLJ prompts you
interactively for that password as well. An exception to this discussion is where
user name URL. CONNECT is used, as discussed in "Online Semantics-Checking and
User Name (-user)" on page 8-31. In this case, user name and password are
determined from the string specified in the - ur | setting, and any setting of the

- passwor d option is ignored.

You can specifically set an empty password to override other settings of the

- passwor d option, such as in a properties file, and be prompted interactively. You
can do this for the Def aul t Cont ext class or any particular connection context
class, as in the following examples:

- passwor d=

or:

- passwor d@ xd ass1=

If you actually want to use an empty password to log in, specify EMPTY. PASSWORD
as in the following examples:

- passwor d=BVPTY. PASSWRD

or:

- passwor d@ xd ass2=BMPTY. PASSWRD

Oracle, however, does not permit an empty password.

8-36 SQLJ Developer’s Guide and Reference

Basic Translator Options

Notes:

« - pisrecognized as equivalent to - passwor d when specified
on the command line.

= You are allowed to use a space instead of "="in a password
setting on the command line, as in the following examples:

-password tiger

- passwor d@ xd ass tiger
-p tiger

-p@xdass tiger

Command-line syntax - passwor d<@onn_cont ext_cl ass>=user_passwor d

Command-line examples
- passwor d=t i ger
- passwor d=
- passwor d=BVPTY. PASSWRD
- passwor d@ xd ass=ti ger

Properties file syntax sql j . passwor d<@onn_cont ext _cl ass>=user_passwor d

Properties file examples
sql j . passwor d=t i ger
sql j . passwor d=
sql j . passwor d=EMPTY. PASSWIRD
sql j . passwor d@x xA ass=ti ger

Default value none

Connection URL for Online Semantics-Checking (-url)

The - ur | option specifies a URL for establishing a database connection for online
semantics-checking. As necessary, the URL can include a host name, port number,
and Oracle database SID.

You can also specify the URL as part of the - user option setting. (See "Online
Semantics-Checking and User Name (-user)" on page 8-31.) Do not use the - ur |
option for a connection context class if you have already set its URL in the - user
option, which takes precedence.

For the most part, functionality of the - ur | option parallels that of the - user
option. That is, if your application uses only the default connection or other

Translator Command Line and Options 8-37

Basic Translator Options

instances of Def aul t Cont ext , the following example would set the URL to use for
the database connection for checking all your SQLJ statements:

-url =j dbc: or acl e: oci 8: @

Or, to include host name, port number, and SID:
-url 5j dbc: or acl e: t hi n: @ost nane: 1521: or cl
If you do not begin a URL setting with j dbc: then the setting is assumed to be of

the form host: port: si d and by default is automatically prefixed with the
following:

jdbc:oracl e:thin: @

Fora-url setting ofl ocal host: 1521: or cl , for example, this results in the
following URL setting:

j dbc: oracl e: thi n: @ocal host : 1521: or cl

You can remove or alter this default prefix with the - def aul t - ur| - prefi x

option. See "Default URL Prefix (-default-url-prefix)" on page 8-40 for more
information.

You can specify the user and password in the - ur | setting, instead of in the - user
and - passwor d settings. In such a case, set - user to URL. CONNECT, as follows:

-url = dbc: oracl e: oci 8: scott/ti ger @- user =URL. GCNNECT
If you declare and use additional connection context classes, Ct xCl ass1 for
example, you will presumably specify additional exemplar schemas to use in testing

statements that use those connection context classes. You can use the - ur | option to
specify URLs for those schemas, as in the following example:

-url @ xd ass1=j dbc: or acl e: oci 8: @
Any connection context class without a URL setting, either through the - ur |

setting or the - user setting, uses the URL setting for the default connection context
class, presuming a URL has been set for the default context class.

8-38 SQLJ Developer’s Guide and Reference

Basic Translator Options

Notes:

« Remember that any connection context class with a URL setting
must also have a user name setting for online checking to occur.

= You are allowed to use a space instead of "="in a URL setting
on the command line, as in the following examples:

-url jdbc:oracl e: oci 8: @
-url @ xd ass jdbc: oracl e:oci 8: @

Command-line syntax -url <@onn_cont ext_cl ass>=UR_

Command-line examples
-url =j dbc: or acl e: oci 8: @
-url 5j dbc: or acl e: t hi n: @ost nane: 1521: or cl
-url = dbc: oracl e: oci 8: scott/ti ger @
- ur | =host narre: 1521: or cl
-url @ xd ass=j dbc: oracl e: oci 8: @

Properties file syntax sqlj . url <@onn_cont ext_cl ass>=URL

Properties file examples
sqlj.url =jdbc: oracl e: oci 8: @
sql j . url = dbc: oracl e: t hi n: @ost narre: 1521: or cl
sqlj.url =jdbc: oracl e: oci 8:scott/ti ger @
sql j . url =host nane: 1521: or cl
sqlj . url @ xA ass=j dbc: or acl e: oci 8: @

Default value j dbc: or acl e: oci 8: @

Note: Be aware of the difference in format between specifying
user, password, and URL in the - user option and specifying them
in the - ur | option. (In the - ur | option, the user name and
password are included in the URL, immediately following the
JDBC driver type; in the - user option they precede the URL.) Also
see "Online Semantics-Checking and User Name (-user)" on

page 8-31.

Translator Command Line and Options 8-39

Basic Translator Options

Default URL Prefix (-default-url-prefix)

The following is the default prefix for any URL setting you specify that does not
already start with j dbc:

jdbc:oracl e:thin: @
This allows you to use a shorthand in specifying a URL setting, either in the - user

option or the - ur I option—you can specify only the host, port, and SID of the
database. As an example, presume you set a URL as follows:

- ur | =nyhost : 1521: orcl

or:

- user =scott/ ti ger @yhost : 1521: or cl

By default, the URL will be interpreted to be the following:

j dbc: oracl e: t hi n: @yhost : 1521: or cl

If you specify a full URL that starts with j dbc: , then the default prefix will not be
used, such as in the following example:

-url =j dbc: or acl e: oci 8: @r cl

Use the - def aul t - ur | - pr ef i x option to alter or remove the default prefix. For

example, if you want your URL settings to default to the OCI8 driver, instead of the
Thin driver, then set the default prefix as follows:

-defaul t-url - prefi x=j dbc: oracl e: oci 8: @
With this prefix, a setting of - ur | =or cl is equivalent to the
-url =j dbc: oracl e: oci 8: @r cl setting above.

If you do not want any prefix, then set the - def aul t - ur | - pref i x option to an
empty string, as follows:

-defaul t-url -prefix=

Command-line syntax -defaul t-url-prefix=url_prefix

Command-line examples
-defaul t-url - prefi x=j dbc: oracl e: oci 8: @
-defaul t-url -prefix=

8-40 SQLJ Developer’s Guide and Reference

Basic Translator Options

Properties file syntax sqlj.defaul t-url-prefix=url_prefix

Properties file examples
sqlj.defaul t-url-prefi x5 dbc: oracl e: oci 8: @
sqlj.default-url-prefix=

Default value j dbc: oracl e: t hin: @

JDBC Drivers to Register for Online Semantics-Checking (-driver)

The - dri ver option specifies the JDBC driver class to register for interpreting
JDBC connection URLSs for online semantics-checking. Specify a driver class or
comma-separated list of classes.

The default, Or acl eDri ver, supports the Oracle OCI8, Thin, and server-side JDBC
drivers for use with Oracle databases.

Command-line syntax -driver=driverl<, driver2 driver3, ...>

Command-line examples
-driver=oracl e.jdbc. driver.Cacl eDriver
-driver=oracle.jdbc.driver.Qacl elriver, sun. j dbc. odbc. JdbcQdbeDri ver

Properties file syntax sqlj . driver=driverl<, driver2 driver3,...>

Properties file examples
sqlj.driver=oracle.jdbc.driver. Qacl elxi ver
sqlj.driver=oracle.jdbc.driver. Oacl elxiver, sun.jdbc. odbc. JdbcQdbcDri ver

Default value oracl e. j dbc. driver. O acl eDri ver

Reporting and Line-Mapping Options

The following options specify what types of conditions SQLJ should monitor,
whether to generate real-time error and status messages, and whether to include
"cause" and "action" information with translator error messages:

= -warn
= -status
« -explain

The following options enable line-mapping from the generated Java . cl ass file
back to the . sql j source file, so that you can trace runtime errors back to the

Translator Command Line and Options 8-41

Basic Translator Options

appropriate location in your original source code. Use - j dbl i nemap in conjunction
with the Sun Microsystems j db debugger; otherwise use - | i nemap.

« -linemap

« -jdblinemap

Translator Warnings (-warn)

There are various warnings and informational messages that the SQLJ translator
can display as dictated by conditions it encounters during the translation. The

- war n option consists of a set of flags that specify which of those warnings and
messages should be displayed (in other words, which conditions should be
monitored and which should be ignored).

All the flags for this option must be combined into a single, comma-separated
string.

Table 8-2 documents the conditions that can be tested, what at r ue flag value
means, what the t r ue and f al se flag values are for each condition, and which
value is the default.

Table 8-2 Tests and Flags for SQLJ Warnings

Tests and Flag Functions TRUE/FALSE Values

Data precision test—Enabling pr eci si on warns if there was a pr eci si on (default)
possible loss of precision when moving values from database

. nopr eci si on
columns to Java host variables. P

Conversion loss test for nullable data—Enabling nul | s warns if nul | s (default)
there was possible conversion loss when moving nullable

columns or nullable Java types from database columns to Java nonulI's
host variables.
Portability test—Enabling por t abl e checks SQLJ clauses for portable

portability and warns if there are non-portable clauses. (Where
non-portable refers to the use of extensions to the SQLJ standard,
such as vendor-specific types or features.)

noport abl e (default)

Strict matching test for named iterators—Enabling stri ct strict (default)
instructs SQLJ to require that the number of columns selected
from the database must equal the number of columns in the
named iterator being populated. A warning is issued for any
column in the database cursor for which there is no corresponding
column in the iterator. The nost ri ct setting allows more (but
not fewer) columns in the database cursor. Unmatched columns
are ignored.

nostrict

8-42 SQLJ Developer’s Guide and Reference

Basic Translator Options

Table 8-2 Tests and Flags for SQLJ Warnings (Cont.)

Tests and Flag Functions TRUE/FALSE Values

Translation-time informational messages—Enabling ver bose verbose
provides additional informational messages about the translation
process (such as what database connections were made for online
checking).

nover bose (default)

Enable or disable all warnings. al |
none

The ver bose/ nover bose flag works differently from the others. It does not
enable a particular test but enables output of general informational messages about
the semantics-checking.

Note: Do not confuse - war n=ver bose with the - st at us flag.
The - st at us flag provides real-time informational messages about
all aspects of SQLJ translation—translation, semantics-checking,
compilation, and profile customization. The - war n=ver bose flag
simply results in additional reporting after the translation and
about the translation phase only.

The global al | /none flag takes priority over default settings. You can use it to
enable or disable all flags, or to serve as an initialization to make sure all flags are
off before you turn selected flags on, or the converse.

The al | setting is equivalent to the following:

preci sion, nulls, portable, strict, verbose

And the none setting is equivalent to the following:

nopr eci si on, nonul | s, noport abl e, nostri ct, nover bose

There is no default for al | /none; there are only defaults for individual flags.
For example, use the following sequence to make sure only the nul | s flag is on:

-war n=none, nul | s

And the following sequence will have the same result, because the ver bose setting
will be overridden:

-war n=ver bose, none, nul | s

Translator Command Line and Options 8-43

Basic Translator Options

Or use the following to make sure everything except the portability flag is on:

-warn=al | , noportabl e

And the following sequence will have the same result, because the nonul | s setting
will be overridden:

-warn=nonul | s, al |, noport abl e

Other than placement of the al | /none flag, the order in which flags appear in a

- war n setting is unimportant, except in the case of conflicting settings. If there are
conflicts—such as in - war n=port abl e, noport abl e—then the last (right-most)
setting is used.

Separate settings of the - war n option in properties files and on the command line
are not cumulative. Only the last setting is processed. In the following example, the
-war n=por t abl e setting is ignored—that flag and all other flags besides

nul | s/ nonul | s are set according to their defaults:

-war h=por t abl e -warn=nonul | s

Note: The precision, nullability, and strictness tests are part of
online semantics-checking and require a database connection.

Command-line syntax -war n=cormma- separat ed | i st_of_f| ags
Command-line example -war n=none, nul | s, pr eci si on

Properties file syntax sql j . war n=conma-separat ed |ist_of _fl ags
Properties file example sql j . war n=none, nul | s, pr eci si on

Default values preci sion, nul | s, noport abl e, stri ct, nover bose

Real-Time Status Messages (-status)

The - st at us flag instructs SQLJ to output additional status messages throughout
all aspects of the SQLJ process—translation, semantics-checking, compilation, and
customization. Messages are output as each file is processed and at each stage of
SQLJ operation.

8-44 SQLJ Developer’s Guide and Reference

Basic Translator Options

Notes:

« Do not confuse - war n=ver bose with the - st at us flag. The
- st at us flag provides real-time informational messages about
all aspects of SQLJ translation. The - war n=ver bose flag
results in additional reporting after the translation and about
the translation phase only.

« For compatibility with the | oadj ava utility, - v is recognized
as equivalent to - st at us when specified on the command line.
See "Options for loadjava Compatibility" on page 8-8.

Command-line syntax -status=true/fal se
Command-line example - st at us=true
Properties file syntax sqlj .status=true/fal se
Properties file example sqlj . st at us=fal se

Default value fal se

Cause and Action for Translator Errors (-explain)

The - expl ai n flag instructs the SQLJ translator to include "cause" and "action"
information (as available) with translator error message output (for the first
occurrence of each error).

This is the same information provided in "Translation Time Messages", starting on
page B-2.

Command-line syntax -expl ai n=t rue/fal se
Command-line example -expl ai n=true
Properties file syntax sqlj . expl ai n=t rue/fal se
Properties file example sqlj . expl ai n=f al se

Default value fal se

Translator Command Line and Options 8-45

Basic Translator Options

Line-Mapping to SQLJ Source File (-linemap)

The - | i nemap flag instructs SQLJ to map line numbers from a SQLJ source code
file to locations in the corresponding . cl ass file. (This will be the . cl ass file
created during compilation of the . j ava file generated by the SQLJ translator.) As a
result, when Java runtime errors occur, the line number reported by the JVM is the
line number in the SQLJ source code, making it much easier to debug.

Normally, the instructions in a . cl ass file map to source code lines in the
corresponding . j ava file. This would be of limited use to SQLJ developers, though,
as they would still need to map line numbers in the generated . j ava file to line
numbers in their original . sql j file.

The SQLJ translator modifies the . cl ass file to implement the - | i nermap option,
replacing line numbers and the file name from the generated . j ava file with
corresponding line numbers and the file name from the original . sql j file. This
process is known as instrumenting the class file.

In performing this, SQLJ takes the following into account:
« the - d option setting, which determines the root directory for . cl ass files

« the-dir option setting, which determines the root directory for generated
. j avafiles

Notes:

« Ifyou are processing a. sql j file and the compilation step is
skipped due to error, then no line-mapping can be performed
either, because no . cl ass file is available for mapping.

=« When the Java compiler is invoked from SQLJ (as is typical), it
always reports compilation errors using line numbers of the
original . sql j source file, not the generated . j ava file. No
option needs to be set for this mapping.

« Anonymous classesina. sql j file will not be instrumented.

« If you are using the Sun Microsystems j db debugger, then use
the - j dbl i nenmap option (discussed next), instead of the
-1 i nemap option.

Command-line syntax -1i nenmap=t rue/fal se

Command-line example -1i nemap=true

8-46 SQLJ Developer’s Guide and Reference

Basic Translator Options

Properties file syntax sqlj .!inenap=t rue/fal se
Properties file example sqlj . i nenap=f al se

Default value fal se

Line-Mapping to SQLJ Source File for jdb Debugger (-jdblinemap)

This option is equivalent to the - | i nemap option (discussed in the preceding
section), but you should use it instead of - | i nemap if you are using the j db
debugger provided with the Sun Microsystems JDK.

This is because j db can access only source files with a . j ava file name extension.
What - j dbl i nemap performs is the following:

= Overwrites the contents of the . j ava file generated by the translator with the
contents of the original . sql j file.

« Preservesthe . j ava file name, instead of the . sql j file name, in the generated
. cl ass file.

In this way, the SQLJ source code is accessible to j db.
Command-line syntax -j dbl i nemap=t rue/fal se
Command-line example -j dbl i nemap=t r ue

Properties file syntax sqlj .j dbl i nemap=t rue/fal se
Properties file example sqlj . j dbl i nenap=f al se

Default value fal se

Translator Command Line and Options 8-47

Advanced Translator Options

Advanced Translator Options

This section documents the syntax and functionality of the advanced flags and
options you can specify in running SQLJ, as well as prefixes employed to pass
options to the JVM, Java compiler, or SQLJ profile customizer. These options allow
you to exercise any of the specialized features of Oracle SQLJ. For options that can
also be specified in a properties file (such as sql j . properti es), that syntax is
noted as well (see "Properties Files for Option Settings" on page 8-13 for more
information).

Additional advanced options, intended specifically for situations where you are
using alternative Java environments, are discussed in "Translator Support and
Options for Alternative Environments" on page 8-64. More basic command line
flags and options are discussed in "Basic Translator Options" on page 8-19.

Prefixes that Pass Option Settings to Other Executables

The following flags mark options to be passed to the Java interpreter, Java compiler,
and SQLJ profile customizer:

« -J (mark options for Java interpreter)
« - C(mark options for Java compiler)

« - P (mark options for profile customizer)

Options to Pass to the Java Virtual Machine (-J)

The - J prefix, specified on the command line, marks options to be passed to the
JVM from which SQLJ was invoked. This prefix immediately precedes a JVM
option, with no spaces in between. After stripping off the - J prefix, the sql j script
passes the Java option to the JVM.

For example:

-J- Duser. | anguage=j a

After stripping the - J prefix, the sql j script passes the - Duser . | anguage
argument as is to the JVM. In the Sun Microsystems JDK, the flag

- Duser . | anguage=j a sets the system property user . | anguage to the valuej a

(Japanese), but specific flags are dependent on the actual Java executable you are
using and are not interpreted or acted upon by the sql j script in any way.

You cannot pass options to the JVM from a properties file, because properties files
are read after the JVM is invoked.

8-48 SQLJ Developer’s Guide and Reference

Advanced Translator Options

Notes:

« Itis not possible to use a properties file to pass options directly
to the JVM in which the SQLJ translator runs. It is possible,
however, to use the SQLJ_OPTI ONS environment variable for
this purpose. See "SQLJ_OPTIONS Environment Variable for
Option Settings" on page 8-17. It is also possible (if applicable)
to use a properties file to pass options to the JVM in which the
Java compiler runs. See "Options to Pass to the Java Compiler
(-C)" on page 8-49 for information.

« TheJVMfil e. encodi ng setting does not apply to Java
properties files—sql j . properti es and
connect . properti es, for example. Properties files always
use the encoding 8859_1. This is a feature of Java in general,
not SQLJ in particular. You can, however, use Unicode escape
sequences in a properties file. (You can use the nat i ve2asci i
utility to determine escape sequences—see "Using native2ascii
for Source File Encoding" on page 9-26.)

Command-line syntax -J- Java_option
Command-line example -J- Duser. | anguage=j a
Properties file syntax n/a

Properties file example n/a

Default value n/a

Options to Pass to the Java Compiler (-C)

The - C prefix marks options to pass to the Java compiler invoked from the sql |
script. This prefix immediately precedes a Java compiler option, with no spaces in
between. After stripping off the - C prefix, the sql j script passes the compiler
option to the Java compiler (typically, but not necessarily, j avac).

For example:

-G nowarn

Translator Command Line and Options 8-49

Advanced Translator Options

After stripping the - C prefix, the sql j script passes the - nowar n argument as is to
the compiler. The - nowar n flag is aj avac option to suppress warning messages
during compilation.

One Java compiler option, - cl asspat h, is slightly modified when it is passed to
the compiler. All other compiler options are passed without change. (Note that if
you want the same CLASSPATH setting for the JVM and compiler, then you can use
the SQLJ - cl asspat h option, instead of - J- cl asspat h and - C- cl asspat h.)

Specify the CLASSPATH setting to the Java compiler, using the following syntax:
- G cl asspat h=pat h

For example:

- G cl asspat h=/ user/j dk/ bi n

The equals sign is necessary for SQLJ parsing but is automatically replaced with a
space when the option is passed to the Java compiler. After the - Cis stripped off
and the equals sign is replaced, the option is passed to the compiler as follows:

-cl asspat h /user/j dk/ bin

If the Java compiler runs in its own JVM, then you can pass options to that VM
through the compiler. Accomplish this by prefixing the JVM option with - C- J with
no spaces between this prefix combination and the option.

For example:

- G J- Duser . | anguage=de

Observe the following restrictions in using the - C prefix:

« Donotuse-C encodi ng to specify encoding of . j ava files processed by the
Java compiler. Instead, use the SQLJ - encodi ng option, which specifies
encoding of . sql j files processed by SQLJ and . j ava files generated by SQLJ,
and is also passed to the compiler. This ensures that . sql j filesand. j ava files
receive the same encoding. (For information about the - encodi ng option, see
"Encoding for Input and Output Source Files (-encoding)" on page 8-26.)

« Do notuse - Cd to specify an output directory for . cl ass files. Instead, use
the SQLJ - d option, which specifies the output directory for generated profile
(- ser) files and is also passed to the Java compiler. This will ensure that
. cl ass filesand . ser files are in the same directory. (For information about
the - d option, see "Output Directory for Generated .ser and .class Files (-d)" on
page 8-27.)

8-50 SQLJ Developer’s Guide and Reference

Advanced Translator Options

Notes:

» Inthe above - cl asspat h discussion, the forward-slash (/)
was used as the file separator. Be aware, however, that in
specifying this or similar options, you must use the file
separator of your operating system, as specified in the
file.separator system property of your JVM.

« If you specify compiler options but disable compilation
(- conpi | e=f al se), then the compiler options are silently
ignored.

« The compiler help option (- C- hel p, presuming your compiler
supports - hel p) can be specified only on the command line or
in the SQLJ_OPTI ONS variable, not in a properties file. As with
the SQLJ - hel p option, no translation will be done. This is true
even if you also specify files to process. (SQLJ assumes that you
want help or you want translation, but not both.)

Command-line syntax - G Java conpi | er_option
Command-line example - G nowarn

Properties file syntax conpi | e. Java_conpi | er_opti on
Properties file example conpi | e. nowar n

Default value n/a

Options to Pass to the Profile Customizer (-P)

During the customization phase, the sqgl j script invokes a front-end customizer
harness, which coordinates the customization and runs your particular customizer.
The - P prefix marks options for customization, as follows:

« Use the - P prefix by itself to pass generic options to the customizer harness that
apply regardless of the customizer.

« Use the - P- Cprefix to pass vendor-specific options to the particular customizer
you are using.

Translator Command Line and Options 8-51

Advanced Translator Options

The - P and - P- Cprefixes immediately precede a customizer option, with no spaces
in between. After stripping off the prefix, the sql j script passes the customizer
option as is to the profile customizer.

One use of the - P prefix is to override the default customizer determined by the
SQLJ - def aul t - cust omi zer option, as follows:

- P- cust om zer =your_cust om zer_cl ass

Example of generic option:

- P- backup

The - backup flag is a generic customizer option to backup the previous
customization before generating a new one.

Here is an example of a vendor-specific customizer option (in this case,
Oracle-specific):

- P- Gurmmary

The summar y flag is an Oracle customizer option that prints a summary of the
customizations performed.

Notes:

= Note that there is no hyphen between "-P-C" and a
vendor-specific customizer option. With other prefixes and
prefix combinations, there is a hyphen between the prefix and
the option.

= Thecustomizer help option (- P- hel p) can be specified only on
the command line or in the SQLJ_OPTI ONS variable, notin a
properties file. As with the SQLJ - hel p option, no translation
will be done. This is true even if you also specify files to
process. (SQLJ assumes that you want help or you want
translation, but not both.)

« Ifyou specify customization options but turn off customization
for . sql j files (and have no . ser files on the command line),
then the customization options are silently ignored.

For information about available generic and Oracle-specific customizer options, see
"Customization Options and Choosing a Customizer" on page 10-11.

8-52 SQLJ Developer’s Guide and Reference

Advanced Translator Options

Command-line syntax -P-<C>profile_custonizer_option

Command-line examples
-P-driver=oracl e. dbc. dri ver. O acl eDxi ver
- P- Gurmmary

Properties file syntax profile. <C>profil e custonizer_option

Properties file example
profil e.driver=oracle.jdbc.driver. Oacl elxi ver
profil e. Gsurmary

Default value n/a

Flags for Special Processing
As mentioned above, . sql j files are typically processed by the SQLJ translator,
Java compiler, and SQLJ profile customizer. The following flags limit this
processing, directing the SQLJ startup script to skip the indicated process:
« -conpile
« -profile
The following flag instructs SQLJ to convert profiles from serialized resource (. ser)
files to class files after customization:
« -ser2class

The following flag instructs SQLJ type resolution, in certain circumstances, to
examine source files as well as class files or files specified on the SQLJ command
line:

« -checksource

Compilation Flag (-compile)

The - conpi | e flag enables or disables processing of . j ava files by the compiler.
This applies both to generated . j ava files and to . j ava files specified on the
command line. This flag is useful, for example, if you want to compile . j ava files
later using a compiler other than j avac. The flag is t r ue by default; setting it to
f al se disables compilation.

When you process a . sqgl j file with - conpi | e=f al se, you are responsible for
compiling and customizing it later as necessary.

Translator Command Line and Options 8-53

Advanced Translator Options

Notes:

« Setting - conpi | e=f al se also implicitly sets
- profil e=fal se. In other words, whenever - conpi | e is
f al se, both compilation and customization are skipped. If you
set - conpi | e=fal se and - profil e=true, then your
- profil e setting is ignored.

« There are situations where it is sensible for - conpi | e to be set
to f al se even when . j ava files must be accessed for type
resolution. You might do this, for example, if you are
translating a. sql j file, the translator will need one or more
. j ava files for type resolution during translation, but you
want to compile all your . j ava files later using a particular
compiler.

(An example of a situation where . j ava files must be accessed
for type resolution is if you are using Oracle8i objects in your
SQLJ application and using the Oracle JPublisher utility to map
these objects to custom Java types. The . j ava files produced
by JPublisher must be available to the SQLJ translator for type
resolution during translation. See "Compiling Custom Java
Classes" on page 6-15 for more information.)

Command-line syntax -conpi | e=t rue/fal se
Command-line example -conpi | e=fal se
Properties file syntax sql j . conpi | e=t rue/fal se
Properties file example sqlj . conpi | e=fal se

Default value t r ue (compile)

Profile Customization Flag (-profile)

The - pr of i | e flag enables or disables processing of generated profile (. ser) files
by the SQLJ profile customizer. However, this applies only to . ser files generated
by the SQLJ translator from . sql j files that you specify on the current command
line; it does not apply to previously generated . ser files (or to . j ar files) that you

8-54 SQLJ Developer’s Guide and Reference

Advanced Translator Options

specify on the command line. The flag is t r ue by default; setting itto f al se
disables customization.

This option behaves differently from the - conpi | e option for files specified on the
command line. Any . ser and . j ar files specified on the command line are still
customized if - pr of i | e=f al se; however, . j ava files specified on the command
line are not compiled if - conpi | e=f al se. The reason for this is that you might
want other operations, such as line mapping, to be performed ona . j ava file.
There are, however, no other operations that can be performed ona. ser or.j ar
file specified on the command line.

When you processa . sql j filewith -profile=fal se,you are responsible for
customizing it later, as necessary.

Notes:

« Set this option to f al se if you do not want your application to
require the Oracle SQLJ runtime and an Oracle JDBC driver
when it runs. (Or specify a non-default customizer, using the
-def aul t - cust omi zer option.) If no customization is
performed, then the generic SQLJ runtime will be used when
your application runs.

« Setting - conpi | e=f al se also implicitly sets
- profil e=fal se. In other words, whenever - conpi | e is
f al se, both compilation and customization are skipped. If you
set - conpi | e=fal seand - profil e=true, then your
- profil e setting is ignored.

Command-line syntax -profile=true/fal se
Command-line example -profile=fal se
Properties file syntax sqlj.profil e=true/fal se
Properties file example sqlj.profil e=fal se

Default value t r ue (customize)

Translator Command Line and Options 8-55

Advanced Translator Options

Conversion of .ser File to .class File (-ser2class)

The - ser 2cl ass flag instructs SQLJ to convert generated . ser filesto. cl ass
files. This is necessary if you are using SQLJ to create an applet that will be run from
a browser that does not support resource file names with the . ser suffix. (This is
true of Netscape Navigator 4.x, for example.)

This also simplifies the naming of schema objects for your profiles in situations
where you are translating a SQLJ program on a client and then loading classes and
resource files into the server. Loaded class schema objects have a simpler naming
convention than loaded resource schema objects. (This is discussed in "Loaded
Class and Resource Schema Objects" on page 11-9.)

The conversion is performed after profile customization so that it includes your
customizations.

The base names of converted files are identical to those of the original files; the only
difference in the file name is . ser being replaced by . cl ass. For example:

Foo SJProfil €0. ser

is converted to:

Foo SJProfil e0. cl ass

Notes:
« Theoriginal . ser fileis not saved.

« Once a profile has been converted to a . cl ass file, it cannot be
further customized. You would have to delete the . cl ass file
and rerun SQLJ to recreate the profile.

« Where encoding is necessary, the - ser 2cl ass option always
uses 8859_1 encoding, ignoring the SQLJ - encodi ng setting.

Command-line syntax -ser2cl ass=true/fal se
Command-line example -ser2cl ass=true
Properties file syntax sqlj . ser 2cl ass=true/fal se

Properties file example sqlj . ser2cl ass=f al se

8-56 SQLJ Developer’s Guide and Reference

Advanced Translator Options

Default value fal se

Source Check for Type Resolution (-checksource)

Normally the SQLJ type resolution process examines only class files in the
CLASSPATH, and class or source files specified on the SQLJ command line. The

- checksour ce flag instructs SQLJ to also examine source files in the CLASSPATH
under the following circumstances:

« ifaclass file cannot be found for a required class, but a source file can be found

« ifasource file has a more recent modification date than its corresponding class
file

Note: This applies only to Java types that appear in #sq|
statements, not elsewhere in your Java code. Therefore, you should
always explicitly provide the names of any required . sql j files on
the SQLJ command line.

Command-line syntax - checksour ce=t rue/fal se
Command-line example -checksour ce=true
Properties file syntax sql j . checksour ce=t rue/fal se
Properties file example sql j . checksour ce=f al se

Default value true

Semantics-Checking Options

The following options specify characteristics of online and offline
semantics-checking:

= -offline
= -online
« -cache

Discussion of these options is preceded by a discussion of Or acl eChecker —the
default front-end class for semantics-checking—and an introduction to the Oracle
semantics-checkers.

Translator Command Line and Options 8-57

Advanced Translator Options

Semantics-Checkers and the OracleChecker Front End (default checker)

The default checker is or acl e. sql j . checker . Oracl eChecker (for both online
and offline checking). This class acts as a front end and runs the appropriate
semantics-checker, depending on your environment and whether you choose offline
or online checking.

For Oracle databases and JDBC drivers, there are the following categories of
checkers (for both online and offline checking):

« Oracle8 checkers for Oracle8i types (as used in Oracle8i JDBC)
« Oracle80 checkers for Oracle 8.0.x types (as used in Oracle 8.0.x JDBC)
« Oracle7 checkers for Oracle 7.3.x types (as used in Oracle 7.3.x or 8.0.x JDBC)

« Oracle8To7 checkers for using an Oracle8i JDBC driver, but only with the subset
of types that are compatible with an Oracle 7.3.x database.

The Oracle80 and Oracle7 checkers are incompatible with the Oracle8i JDBC
drivers, and the Oracle8 and Oracle8To7 checkers are incompatible with the Oracle
8.0.x and Oracle 7.3.x JDBC drivers. The Oracle8To7 checkers were created so that
there is a way to use an Oracle8i JDBC driver and check against an Oracle 7.3.x
subset of types.

Online Checking with Oracle Database and JDBC Driver If you are using an Oracle
database and Oracle JDBC driver with online checking, then Or acl eChecker will
choose a checker based on the lower of your database version and JDBC driver
version. Table 8-3 summarizes the choices for the possible combinations of database
version and driver version, and also notes any other Oracle checkers that would be
legal.

Table 8-3 Oracle Online Semantics-Checkers Chosen by OracleChecker

Other Legal Online
Database Version JDBC Version Chosen Online Checker Checkers

Oracle8i or 8.0.x Oracle8i Oracle8JdbcChecker Oracle8To7JdbcChecker
Oracle8i or 8.0.x Oracle 8.0.x Oracle80JdbcChecker Oracle7JdbcChecker
Oracle8i or 8.0.x Oracle 7.3.x Oracle7JdbcChecker none

Oracle 7.3.x Oracle8i Oracle8To7JdbcChecker none

Oracle 7.3.x Oracle 8.0.x Oracle7JdbcChecker none

Oracle 7.3.x Oracle 7.3.x Oracle7JdbcChecker none

8-58 SQLJ Developer’s Guide and Reference

Advanced Translator Options

Offline Checking with Oracle JDBC Driver If you are using an Oracle JDBC driver with
offline checking, then Or acl eChecker will choose a checker based on your JDBC
driver version. Table 8-4 summarizes the possible choices. (Note that there is an
Oracl e8To70Of f 1 i neChecker but it can be used only by selecting it manually.)

Table 8-4 Oracle Offline Semantics-Checkers Chosen by OracleChecker

Other Legal Offline

JDBC Version Chosen Offline Checker Checkers

Oracle8i Oracle8OfflineChecker Oracle8To70fflineChecker
Oracle 8.0.x Oracle800fflineChecker Oracle70fflineChecker
Oracle 7.3.x Oracle70OfflineChecker none

Not Using Oracle Database and JDBC Driver If Or acl eChecker detects that you do not
use an Oracle JDBC driver, then it runs one of the following checkers:

« sqglj.semantics. O flineChecker if online checking is not enabled

« sqglj.semantics. JdbcChecker if online checking is enabled

Offline Semantics-Checker (-offline)

The - of f | i ne option specifies a Java class that implements the semantics-checking
component of SQLJ for offline checking. With offline checking, there is no
connection to the database—only SQL syntax and usage of Java types is checked.
(For information about what offline and online semantics-checkers accomplish and
how they function, see "Semantics-Checking" on page 9-2.)

Note that offline checking is neither enabled nor disabled by the - of f | i ne option.
Offline checking runs only when online checking does not—either because online
checking is not enabled or because the database connection cannot be established.

You can specify different offline checkers for different connection contexts, with a
limit of one checker per context (do not list multiple offline checkers for one
connection context).

The default Or acl eChecker, a front-end class discussed in "Semantics-Checkers
and the OracleChecker Front End (default checker)" on page 8-58, will serve your
needs unless you want to specify a particular checker that would not be chosen by
Or acl eChecker. For example, you might run offline checking on a machine with
an Oracle 8.0 JDBC driver, but your application (or at least statements using a
particular connection context class) will run against an Oracle 7.3 database. In this
case you will want to check these statements using the Oracle7 checker.

Translator Command Line and Options 8-59

Advanced Translator Options

The following example shows how to select the Oracle7 offline checker for a
particular connection context (Ct xCl ass):

-of fli ne@ xAd ass=or acl e. sql j . checker . O acl e7(f | i neChecker
This results in SQLJ using or acl e. sqgl j . checker. Oracl e7Of f | i neChecker

for offline checking of any of your SQLJ executable statements that specify a
connection object that is a Ct xCl ass instance.

The Ct xCl ass connection context class must be declared in your source code or
previously compiled into a . cl ass file. (See "Connection Contexts" on page 7-2 for
more information.)

Use the - of f | i ne option separately for each connection context offline checker
you want to specify; these settings have no influence on each other. For example:

-of fli ne@ xd ass2=oracl e. sql j . checker. O acl e7Cf f| i neChecker
-of fl i ne@ xd ass3=sql j . semanti cs. 0 fli neChecker

To specify the offline checker for the default connection context and any other
connection contexts for which you do not specify an offline checker:

-of fli ne=oracl e. sql j . checker. O acl e7Ci f| i neChecker
Any connection context without an offline checker setting uses the offline checker
setting of the default connection context, presuming an offline checker has been set
for the default context.
Command-line syntax -of f1i ne<@onn_cont ext _cl ass>=checker_cl ass
Command-line examples

-of fli ne=oracl e. sql j . checker. O acl eB0C f | i neChecker

-of fl i ne@ont ext =or acl e. sql j . checker. O acl e80 f | i neChecker
Properties file syntax sqlj . of f1i ne<@onn_cont ext _cl ass>=checker_cl ass
Properties file examples

sqlj.of fline=oracl e.sqlj.checker.Qacl eB0C fl i neChecker

sql j . of fl i ne@ont ext =or acl e. sql j . checker. O acl e80Cf f | i neChecker

Default value oracl e. sql j . checker . O acl eChecker

8-60 SQLJ Developer’s Guide and Reference

Advanced Translator Options

Online Semantics-Checker (-online)

The - onl i ne option specifies a Java class or list of classes that implement the
online semantics-checking component of SQLJ. This involves connecting to a
database.

Remember that online checking is not enabled by the - onl i ne option—you must
enable it through the - user option. The - password,-url ,and - dri ver options
must be set appropriately as well. (For information about what offline and online
semantics-checkers accomplish and how they function, see "Semantics-Checking"
on page 9-2.)

You can specify different online checkers for different connection contexts, and you
can list multiple checkers (separated by commas) for any given context. In cases
where multiple checkers are listed for a single context, SQLJ uses the first checker
(reading from left to right in the list) that accepts the database connection
established for online checking. (At analysis time, a connection is passed to each
online checker, and the checker reports whether the database is recognized.)

The default Or acl eChecker, a front-end class discussed in "Semantics-Checkers
and the OracleChecker Front End (default checker)" on page 8-58, will serve your
needs unless you want to specify a particular checker that would not be chosen by
Or acl eChecker. For example, you might run online checking on a machine with
an Oracle 8.0 database and JDBC driver, but your application (or at least statements
using a particular connection context class) will eventually run against an Oracle 7.3
database. In this case you will want to check these statements using the Oracle7
checker.

The following example shows how to select the Oracle7 online checker for the
Def aul t Cont ext class (and any other connection context classes without a
specified setting):

-onl i ne=or acl e. sql j . checker. Q acl e7JdbcChecker

To specify a list of drivers and allow the proper class to be selected depending on
what kind of database is being accessed:

-onl i ne=oracl e. sql j . checker. O acl e7JdbcChecker, sql j . senanti cs. JdbcChecker

With this specification, if connection is made to an Oracle database, then SQLJ uses
theoracl e. sqgl j . checker. Oracl e7JdbcChecker semantics-checker. If
connection is made to any other kind of database, then SQLJ uses the generic
sqlj.semantics. JdbcChecker semantics-checker. This is similar functionally
to what the default Or acl eChecker does but ensures that you use an Oracle7
checker instead of an Oracle8 checker if you connect to an Oracle database.

Translator Command Line and Options 8-61

Advanced Translator Options

To specify the online checker for a particular connection context (Ct xCl ass):

-onl i ne@ xd ass=or acl e. sql j . checker. O acl e7JdbcChecker

This results in the use of or acl e. sql j . checker . Oracl e7JdbcChecker for
online checking of any of your SQLJ executable statements that specify a connection
object that is an instance of Ct xCl ass, presuming you enable online checking for
Ct xCl ass.

The Ct xCl ass connection context class must be declared in your source code or
previously compiled into a . cl ass file. (See "Connection Contexts" on page 7-2 for
more information.)

Use the - onl i ne option separately for each connection context online checker you
want to specify; these settings have no influence on each other:

-onl i ne@ xd ass2=or acl e. sql j . checker . O acl e80JdbcChecker
-onl i ne@ xA ass3=sql j . senant i cs. JdbcChecker

Any connection context without an online checker setting uses the online checker
setting of the default connection context, presuming you set an online checker for
the default context.

Command-line syntax -onl i ne<@onn_cont ext_cl ass>=checker_cl ass(!i st)

Command-line examples

-onl i ne=or acl e. sql j . checker . O acl e80JdbcChecker

-onl i ne=oracl e. sql j . checker. O acl e80JdbcChecker, sql j . senant i cs. JdbcChecker
-onl i ne@ont ext =or acl e. sql j . checker . O acl e80JdbcChecker

Properties file syntax sqlj . onl i ne<@onn_cont ext_cl ass>=checker_cl ass(li st)

Properties file examples

sql j . onl i ne=oracl e. sql j . checker . O acl e80JdbcChecker

sl j.online=oracl e.sqlj.checker. O acl eB0JdbcChecker, sql j . semanti cs. JdbcChecker
sgl j . onl i ne@ont ext =or acl e. sql j . checker. O acl e80JdbcChecker

Default value oracl e. sql j . checker . O acl eChecker

Caching of Online Semantics-Checker Results (-cache)

Use the - cache option to enable caching of the results generated by the online
checker. This avoids additional database connections during subsequent SQLJ
translation runs. The analysis results are cached in a file, SQLChecker . cache, that
is placed in your current directory.

8-62 SQLJ Developer’s Guide and Reference

Advanced Translator Options

The cache contains serialized representations of all SQL statements successfully
translated (translated without error or warning messages), including all statement
parameters, return types, translator settings, and modes.

The cache is cumulative and continues to grow through successive invocations of
the SQLJ translator. Delete the SQLChecker . cache file to empty the cache.

Command-line syntax -cache=t rue/fal se
Command-line example -cache=true
Properties file syntax sql j . cache=true/fal se
Properties file example sqlj . cache=fal se

Default value fal se

Translator Command Line and Options 8-63

Translator Support and Options for Alternative Environments

Translator Support and Options for Alternative Environments

By default, release 8.1.7 of Oracle SQLJ is configured to run under the Sun
Microsystems JDK 1.2.x and to use the Sun Microsystems compiler j avac. These
are not requirements, however. You can configure SQLJ to work with alternative
JVMs or compilers. To do so, you must supply SQLJ with the following information:

« the name of the JVM to use (- vmoption)
« the name of the Java compiler to use (- conpi | er - execut abl e option)
= any settings the compiler requires

A set of SQLJ options allows you to provide this information. These options are
described in "Java and Compiler Options" on page 8-64.

SQLJ also defaults to the Oracle profile customizer, but can work with alternative
customizers as well. See "Customization Options" on page 8-71 for how to instruct
SQLJ to use a different customizer.

Other SQLJ advanced flags and options are discussed in "Advanced Translator
Options" on page 8-48. "Basic Translator Options" on page 8-19 describes more basic
flags and options.

Note: Be aware of the limitations of any operating system and
environment you use. In particular, the complete, expanded SQLJ
command line must not exceed the maximum command-line size
(for example, 250 characters for Windows 95 and 4000 characters
for Windows NT). Consult your operating system documentation.

Java and Compiler Options
The following options relate to the operation of the JVM and Java compiler:

« - vm(specify the JVM; command-line only)

« -conpil er-execut abl e (specify the Java compiler)
« -conpiler-encoding-flag

« -conpiler-output-file

« -conpiler-pipe-output-flag

Some compilers, such as the standard j avac, require a Java source file name to
match the name of the public class (if any) defined there. Therefore, by default the

8-64 SQLJ Developer’s Guide and Reference

Translator Support and Options for Alternative Environments

SQLJ translator verifies that this is true. You can use the following option, however,
to instruct SQLJ not to verify this:

« -checkfil enane

For some JVM and compiler configurations, there might be problems with the way
SQLJ normally invokes the compiler. You can use the following option to alleviate
this by breaking SQLJ processing into a two-pass process:

. -passes

You can also pass options directly to the particular JVM or compiler you use,
through the - J and - C prefixes discussed in "Prefixes that Pass Option Settings to
Other Executables" on page 8-48.

Note: The - vmoption and - J prefix cannot be used in a properties
file. You can set them on the command line or, more conveniently,
in the SQLJ_OPTI ONS environment variable. See "SQLJ_OPTIONS
Environment Variable for Option Settings" on page 8-17.

Name of the Java Virtual Machine (-vm)

Use the - vmoption if you want to specify a particular JVM for SQLJ to use.
Otherwise SQLJ uses the standard j ava from the Sun Microsystems JDK.

You must specify this command on the command line; you cannot specify itin a
properties file, because properties files are read after the JVM is invoked.

If you do not specify a directory path along with the name of the JVM executable
file, then SQLJ looks for the executable according to the PATH setting of your
operating system.

Note: Special functionality of this option, - vn=echo, is
supported. This is equivalent to the - n option, instructing the sql j
script to construct the full command line that would be passed to
the SQLJ translator, and echo it to the user without having the
translator execute it. For more information, see "Command Line
Echo without Execution (-n)" on page 8-24.

Command-line syntax - vmeJWM pat h+nane

Command-line example -vn¥/ nyj avadi r/ nyj avavm

Translator Command Line and Options 8-65

Translator Support and Options for Alternative Environments

Properties file syntax n/a
Properties file example n/a

Default value j ava

Name of the Java Compiler (-compiler-executable)

Use the - conpi | er - execut abl e option if you want to specify a particular Java
compiler for SQLJ to use. Otherwise SQLJ uses the standard j avac from the Sun
Microsystems JDK.

If you do not specify a directory path along with the name of the compiler
executable file, then SQLJ looks for the executable according to the PATH setting of
your operating system.

The following is required of any Java compiler that you use:

« Itcan output error and status information to the standard output device (for
example, STDOUT on a UNIX system) or, alternatively, to a file (as directed by
the - conpi | er - out put - fi | e option, described below).

« It will understand the SQLJ - d option, which determines the root directory for
class files.

« It must return a non-zero exit code to the operating system whenever a
compilation error occurs.

= Theline information that it provides in any errors or messages must be in one
of the following two formats (items in <> brackets are optional):

— Sun Microsystems j avac format

fil enane. j ava: | i ne<. col unm><-|i ne<. col urm>>

Example:
myfile java:15: llegal character: \u01234'

— Microsoft j vc format

fil enane. j ava(l i ne, col unm)

Example:
myfile java(15,7) llegal character. \u01234'

8-66 SQLJ Developer’s Guide and Reference

Translator Support and Options for Alternative Environments

As always, SQLJ processes compiler line information so that it refers to line
numbers in the original . sql j file, not in the produced . j ava file.

Note: If you use a compiler that does not support an - encodi ng
option, then disable the - conpi | er - encodi ng- f | ag, described
in "Compiler Encoding Support (-compiler-encoding-flag)" on
page 8-67.

Command-line syntax - conpi | er - execut abl e=Java_conpi | er_pat h+nare
Command-line example - conpi | er - execut abl e=/ nyj avadi r/ nyj avac
Properties file syntax sql j . conpi | er - execut abl e=Java_conpi | er_pat h+narne
Properties file example sql j . conpi | er - execut abl e=nyj avac

Default value j avac

Compiler Encoding Support (-compiler-encoding-flag)
As mentioned in "Encoding for Input and Output Source Files (-encoding)" on

page 8-26, it is typical that when you employ the - encodi ng option to specify an
encoding character set for SQLJ to use, SQLJ passes this to the Java compiler for the
compiler to use as well. Set the - conpi | er - encodi ng-fl agtof al se if you do
not want SQLJ to pass the character encoding to the compiler (for example, if you
are using a compiler other than j avac, and it does not support an - encodi ng
option by that name).

Command-line syntax - conpi | er- encodi ng- f| ag=t rue/ f al se

Command-line example -conpi | er - encodi ng- f | ag=f al se

Properties file syntax sql j . conpi | er-encodi ng- f| ag=t rue/ fal se

Properties file example sql j . conpi | er- encodi ng- f| ag=f al se

Default value true

Translator Command Line and Options 8-67

Translator Support and Options for Alternative Environments

Compiler Output File (-compiler-output-file)

If you have instructed the Java compiler to output its results to a file, then use the
-conpi | er-out put - fil e option to make SQLJ is aware of the file name.
Otherwise SQLJ assumes that the compiler outputs to the standard output device
(such as STDOUT on a UNIX system). As appropriate, specify an absolute path, or a
relative path from the current directory.

Note: You cannot use this option if you enable - passes, which
requires output to STDOUT.

Command-line syntax -conpi | er-out put -fi | e=out put_fil e _pat h+name
Command-line example -conpi | er - out put - fi | e=/ nyj avadi r/ nycnpl out put
Properties file syntax sqlj . conpil er-out put-fil e=out put_fil e pat h+name
Properties file example sqlj . conpi | er-out put - fi | e=/ nyj avadi r / nycnpl out put

Default value none (standard output)

Compiler Message Output Pipe (-compiler-pipe-output-flag)

By default, the j avac compiler provided with the Sun Microsystems JDK writes
error and message output to STDERR. SQLJ, however, expects such compiler output
to be written to STDOUT, so it can be captured reliably.

If SQLJ sets the j avac. pi pe. out put system property tot r ue, which is SQLJ’s
default behavior when it invokes the Java compiler, then compiler error and
message output will be sent to STDOUT. You can specify

-conpi | er - pi pe-out put - f | ag=f al se, however, to instruct SQLJ not to set this
system property when it invokes the Java compiler. You should do this, for
example, if the Java compiler you are using does not support the

j avac. pi pe. out put system property.

You can set this flag in a properties file, as well as on the command line or in the
SQLJ_OPTI ONS environment variable.

8-68 SQLJ Developer’s Guide and Reference

Translator Support and Options for Alternative Environments

Note: If you are using a Java compiler that originates from Sun
Microsystems and that writes its output to STDERR by default, then
you must leave - conpi | er - pi pe- out put - f | ag enabled if you
enable - passes, which requires output to STDOUT.

Command-line syntax - conpi | er - pi pe- out put - f | ag=t rue/ f al se
Command-line example -conpi | er - pi pe- out put - f| ag=f al se
Properties file syntax sql j . conpi | er- pi pe-out put - f| ag=t r ue/ f al se
Properties file example sql j . conpi | er - pi pe- out put - f| ag=f al se

Default value true

Source File Name Check (-checkfilename)

This flag instructs SQLJ whether to verify that the SQLJ source file name matches
the name of the public class (if any) defined there. Some compilers, such as the
standard j avac, require this to be the case; others do not.

To maximize portability of your code, this flag should be enabled, which it is by
default.

(It is advisable for the source file name to always match the name of the public class
defined, or, if there is no public class, then the name of the first class defined. For
example, public class MyPubl i cCl ass should be defined in a

MyPubl i cCl ass. sql j source file.)

Note: If you are translating in the server, where there is no
equivalent naming requirement, there is no - checkfi | enane
option, and the translator executes no such check.

Command-line syntax -checkfil enane=t rue/fal se
Command-line example -checkfi| enane=f al se
Properties file syntax sql j . checkf i | ename=t rue/fal se

Properties file example sql j . checkfi | ename=f al se

Translator Command Line and Options 8-69

Translator Support and Options for Alternative Environments

Default value true

SQLJ Two-Pass Execution (-passes)
By default, the following sequence occurs when you invoke the sql j script:

1. Thesqlj scriptinvokes your JVM, which runs the SQLJ translator.

2. The translator completes the semantics-checking and translation of your . sql j
files, generating translated . j ava files.

3. The translator invokes your Java compiler, which compiles the generated
. j ava files.

4. The translator processes the compiler output.
5. The translator invokes a profile customizer to customize your profiles.

For some JVM and compiler configurations, however, the compiler invocation in
step 3 will not return, and your translation will suspend.

If you encounter this situation, the solution is to instruct SQLJ to run in two passes
with the compilation step in between. To accomplish this, you must enable the
- passes flag as follows:

- passes

The - passes option must be specified on the command line or, equivalently, in the
SQLJ_OPTI ONS environment variable. It cannot be specified in a properties file.

Notes:

« Ifyou enable - passes, then compiler output must go to
STDOUT, so leave - conpi | er - pi pe- out put - f | ag enabled
(which is its default). In addition, you cannot use the
-conpi | er-out put - fil e option, which would result in
output to a file instead of to STDOUT.

« Like other command-line-only flags (- hel p, - ver si on, - n),
the - passes flag does not support =t r ue syntax.

With - passes enabled, the following sequence occurs when you invoke the sql j
script:

1. Thesqlj scriptinvokes your JVM, which runs the SQLJ translator for its first
pass.

8-70 SQLJ Developer’s Guide and Reference

Translator Support and Options for Alternative Environments

2. The translator completes the semantics-checking and translation of your . sql j
files, generating translated . j ava files.

3. ThelJVM is terminated.

4. Thesqglj script invokes the Java compiler, which compiles the generated
. j ava files.

5. Thesqglj scriptinvokes your JVM again, which runs the SQLJ translator for its
second pass.

6. The translator processes compiler output.

7. The JVM runs your profile customizer, which customizes your profiles.

With this sequence, you circumvent any problems the JVM might have in invoking
the Java compiler.

Command-line syntax - passes

Command-line example - passes

Properties file syntax n/a

Properties file example n/a

Default value of f

Customization Options
The following options relate to the customization of your SQLJ profiles:
« -default-custom zer

« options passed directly to the customizer

Default Profile Customizer (-default-customizer)

Use the - def aul t - cust omi zer option to instruct SQLJ to use a profile
customizer other than the default, which is:

oracle.sqlj.runtine. util.QaQustom zer

In particular, use this option if you are not using an Oracle database.

This option takes a fully qualified Java class name as its argument.

Translator Command Line and Options 8-71

Translator Support and Options for Alternative Environments

Notes: You can override this option with the - P- cust oni zer
option in your SQLJ command line (or properties file). For more
information, see "Options to Pass to the Profile Customizer (-P)" on
page 8-51.

Command-line syntax -def aul t - cust omi zer =cust oni zer_cl assnane
Command-line example -def aul t - cust o zer =sq| j . nyuti | . MyQust omi zer
Properties file syntax sqlj . def aul t - cust om zer =cust oni zer_cl assnane
Properties file example sqlj . def aul t - cust om zer =sql j . nyuti | . M/Qust oni zer

Default value oracle.sqlj.runtine.util.Q aQustom zer

Note: When you use an Oracle database, Oracle recommends that
you use the default Or aCust omi zer for your profile
customization.

Options Passed Directly to the Customizer

As with the JVM and compiler, you can pass options directly to the profile
customizer harness using a prefix, in this case - P. This is discussed in "Options to
Pass to the Profile Customizer (-P)" on page 8-51.

Details about these options, both general customization options and Oracle-specific
customizer options, are covered in "Customization Options and Choosing a
Customizer" on page 10-11.

8-72 SQLJ Developer’s Guide and Reference

9

Translator and Runtime Functionality

This chapter discusses internal operations and functionality of the Oracle SQLJ
translator and runtime.

The following topics are covered:

« Internal Translator Operations

« Functionality of Translator Errors, Messages, and Exit Codes
« SQLJRuntime

» NLS Support in the Translator and Runtime

Translator and Runtime Functionality 9-1

Internal Translator Operations

Internal Translator Operations

The following topics summarize the operations executed by the SQLJ translator
during a translation:

« Code-Parsing and Syntax-Checking
« Semantics-Checking

« Code Generation

« Java Compilation

« Profile Customization

Code-Parsing and Syntax-Checking

In this first phase of SQLJ translation, a SQLJ parser and a Java parser are used to
process all the source code and check syntax.

As the SQLJ translator parses the . sql j file, it invokes a Java parser to check the
syntax of Java statements and a SQLJ parser to check the syntax of SQLJ constructs
(anything preceded by #sql). The SQLJ parser also invokes the Java parser to check
the syntax of Java host variables and expressions within SQLJ executable
statements.

The SQLJ parser checks the grammar of SQLJ constructs according to the SQLJ
language specification. It does not check the grammar of the embedded SQL
operations, however. SQL syntax is not checked until the semantics-checking step.

This syntax-check will discover errors such as missing semi-colons, mismatched
curly braces, and obvious type mismatches (such as multiplying a number by a
string).

If the parsers discover any syntax errors or type mismatches during this phase, then
the translation is aborted, and the errors are reported to the user.

Semantics-Checking

Once the SQLJ application source code is verified as syntactically correct, the
translator enters into the semantics-checking phase and invokes a
semantics-checker, according to user option settings. The semantics-checker verifies
the validity of Java types in SQL operations (result expressions or host expressions)
and optionally connects to a database to check compatibility between Java types
and SQL types.

9-2 SQLJ Developer's Guide and Reference

Internal Translator Operations

The - user option specifies online checking, and the - passwor d and - ur| options
finish specifying the database connection if the password and URL were not
specified in the - user option. The - of f | i ne or - onl i ne option specifies which
checker to use. The default is a checker front end called Or acl eChecker, which
chooses the most appropriate checker, according to whether you have enabled
online checking and which JDBC driver you are using. For more information, see
"Connection Options" on page 8-30 and "Semantics-Checking Options" on

page 8-57.

Note: Semantics-checking can also be performed on a profile that
was produced during a previous execution of the SQLJ translator.
See "SQLCheckerCustomizer for Profile Semantics-Checking" on
page 10-38.

The following two tasks are always performed during semantics-checking, whether
offline or online:

1.

SQLJ analyzes the types of Java expressions in your SQLJ executable
statements.

This includes examining the SQLJ source files being translated, any . j ava files
entered on the command-line, and any imported Java classes whose . cl ass
files or . j ava files can be found through the CLASSPATH. SQLJ examines
whether and how stream types are used in SELECT or CAST statements, what
Java types are used in iterator columns or INTO-lists, what Java types are used
as input host variables, and what Java types are used as output host variables.

SQLJ also processes FETCH, CAST, CALL, SET TRANSACTI ON, VALUES, and
SET statements syntactically.

Any Java expression in a SQLJ executable statement must have a Java type valid
for the given situation and usage. For example, in the following statement:

#sgl [nyGx] { UPDATE ... };
The nmy Ct x variable, which might be used to specify a connection context

instance or execution context instance for this statement, must actually resolve
to a SQLJ connection context type or execution context type.

And in the following example:
#sgl { UPDATE enp SET sal = :newsal };

Translator and Runtime Functionality 9-3

Internal Translator Operations

If newSal is avariable (as opposed to a field), then an error is generated if
newSal was not previously declared. In any case, an error is generated if it
cannot be assigned to a valid Java type, or its Java type cannot be used in a SQL
statement (aj ava. uti | . Vect or, for example).

Note: Remember that semantics-checking of Java types is
performed only for Java expressions within SQLJ executable
statements. Such errors in your standard Java statements will not be
detected until compilation by the Java compiler.

SQLJ tries to categorize your embedded SQL operations—each operation must
have a recognizable keyword, such as SELECT or | NSERT, so that SQLJ knows
what kind of operation it is. For example, the following statement will generate
an error:

#sqgl { foo };

The following two tasks are performed only if online checking is enabled:

3.

SQLJ analyzes your embedded SQL operations and checks their syntax against
the database.

SQLJ checks the types of Java expressions in SQLJ executable statements
against: 1) SQL types of corresponding columns in the database; 2) SQL types of
corresponding arguments and return variables of stored procedures and
functions.

In the process of doing this, SQLJ verifies that the SQL objects used in your
SQLJ executable statements (such as tables, views, and stored procedures)
actually exist in the database. SQLJ also checks nullability of database columns
whose data is being selected into iterator columns of Java primitive types,
which cannot process null data. (Nullability is not checked for stored procedure
and function output parameters and return values, however.)

If the semantics-checker discovers any syntax or semantics errors during this phase,
then the translation is aborted, and the errors are reported.

Oracle supplies Oracle-specific offline checkers, a generic offline checker,
Oracle-specific online checkers, and a generic online checker. For more information
about checkers, see "Offline Semantics-Checker (-offline)" on page 8-59 and "Online
Semantics-Checker (-online)" on page 8-61.

9-4 SQLJ Developer's Guide and Reference

Internal Translator Operations

The generic checkers assume you are using only standard SQL92 and standard
JDBC features. Oracle recommends that you use the Oracle-specific checkers when
using an Oracle database.

Notes: The following is not checked against the database during
online semantics-checking:

« DDL statements (such as CREATE, ALTER, and DROP) and
transaction control statements (such as COMM T and
ROLLBACK)

« compatibility of data corresponding to weakly typed host
expressions (those using the or acl e. sgl package STRUCT,
REF, and ARRAY classes, which are discussed in "Weakly Typed
Obijects, References, and Collections" on page 6-71)

« mode compatibility (I N, OUT, or | N OUT) of expressions in
PL/SQL anonymous blocks

Code Generation

For your . sqgl j application source file, the SQLJ translator generates a. j ava file
and at least one profile (either in . ser or. cl ass files). A . j ava file is created for
your translated application source code, class definitions for private iterators and
connection contexts you declared, and a profile-keys class definition generated and
used internally by SQLJ.

Note: Profiles and a profile-keys class are not generated if you do
not use any SQLJ executable statements in your code.

Generated Application Code in .java File

Once your application source code has passed the preceding syntax and semantics
checks, it is translated and output to a . j ava file. SQLJ executable statements are
replaced by calls to the SQLJ runtime, which in turn contains calls to the JDBC
driver to access the database.

The generated . j ava file contains all your generic Java code, your iterator class and
connection context class definitions, and calls to the SQLJ runtime.

For convenience, generated . j ava files also include a comment for each of your
#sql statements, repeating the statement in its entirety for reference.

Translator and Runtime Functionality 9-5

Internal Translator Operations

The generated . j ava file will have the same base name as the input . sql j file,
which would be the name of the public class defined in the . sql j file (or the first
class defined if there are no public classes). For example, Foo. sql j defines class
Foo, and source file Foo. j ava will be generated by the translator.

The location of the generated . j ava file depends on whether and how the SQLJ

- di r option is set. By default, the . j ava file will be placed in the directory of the
. sqlj inputfile. (See "Output Directory for Generated .java Files (-dir)" on

page 8-29 for more information.)

Generated Profile-Keys Class in .java File

During translation, SQLJ generates a profile-keys class that it uses internally during
runtime to load and access the serialized profile. This class contains mapping
information between the SQLJ runtime calls in your translated application and the
SQL operations placed in the serialized profile. It also contains methods to access
the serialized profile.

This class is defined in the same . j ava output file that has your translated
application source code, with a class name based on the base name of your . sql |
source file as follows:

Basenanme_SIProf i | eKeys

For example, translating Foo. sql j defines the following profile-keys class in the
generated . j ava file:

Foo_SIProfil ekeys

If your application is in a package, this is reflected appropriately. For example,
translating Foo. sql j in the package a. b defines the following class:

a. b. Foo_SIProfi | eKeys

Generated Profiles in .ser or .class Files

SQLJ generates profiles that it uses to store information about the SQL operations
found in the input file. A profile is generated for each connection context class that
you use in your application. It describes the operations to be performed using
instances of the associated connection context class, such as SQL operations to
execute, tables to access, stored procedures and functions to call.

Profiles are generated in . ser serialized resource files. If, however, you enable the
SQLJ - ser 2cl ass option, they are automatically converted to . cl ass files as part
of the translation. (In this case, no further customization of the profile is possible.

9-6 SQLJ Developer's Guide and Reference

Internal Translator Operations

You would have to delete the . cl ass file and rerun the SQLJ translator to
regenerate the profile.)

Profile base names are generated similarly to the profile-keys class name. They are
fully qualified with the package name, followed by the . sql j file base name,
followed by the string:

_SIProfilen

Where n is a unique number, starting with 0, for each profile generated for a
particular . sql j input file.

Again using the example of the input file Foo. sql j , if two profiles are generated,
then they will have the following base names (presuming no package):

Foo SJProfil el
Foo SIProfil el

If Foo. sql j isinthe package a. b, then the profile base names will be:

a.b. Foo SIProfil el
a.b. Foo SIProfilel

Physically, a profile exists as a Java serialized object contained within a resource file.
Resource files containing profiles use the . ser extension and are named according
to the base name of the profile (excluding package names). Resource files for the
two previously mentioned profiles will be named:

Foo SJProfil €0. ser
Foo SJProfil el. ser

(Or they will be named Foo_SJPr of i | 0. cl ass and Foo_SJProfil el. cl ass
if you enable the - ser 2cl ass option. If you choose this option, the conversion to
. ¢l ass takes place after the customization step below.)

The location of these files depends on how the SQLJ - d option is set, which
determines where all generated . ser and . cl ass files are placed. (See "Output
Directory for Generated .ser and .class Files (-d)" on page 8-27 for more
information.)

In a later step in the SQLJ process, your profiles are customized for use with your
particular database. See "Profile Customization" on page 9-10.

Translator and Runtime Functionality 9-7

Internal Translator Operations

More About Generated Calls to SQLJ Runtime

When your #sql statements are replaced by calls to the SQLJ runtime, these calls
implement the following steps:

1. Geta SQLJ statement object (using information stored in the associated profile
entry).

2. Bind inputs into the statement (using set XXX() methods of the statement
object).

3. Execute the statement (using the execut eUpdat e() orexecut eQuery()
method of the statement object).

4. Create iterator instances, if applicable.

5. Retrieve outputs from the statement (using get XXX() methods of the
statement object).

6. Close the statement.

A SQLJ runtime uses SQLJ statement objects that are similar to JDBC statement
objects, although a particular implementation of SQLJ might or might not employ
JDBC statement classes directly. SQLJ statement classes add functionality particular
to SQLJ. For example:

« Standard SQLJ statement objects raise a SQL exception if a null value from the
database is to be output to a primitive Java type such asi nt or f | oat, which
cannot take null values.

= Oracle SQLJ statement objects allow user-defined object and collection types to
be passed to or retrieved from an Oracle database.

Java Compilation

After code generation, SQLJ invokes the Java compiler to compile the generated

. j avafile. This produces a . cl ass file for each class you defined in your
application, including iterator and connection context declarations, as well as a

. ¢l ass file for the generated profile-keys class (presuming your application uses
SQLJ executable statements). Any . j ava files you specified directly on the SQLJ
command line (for type-resolution, for example) are compiled at this time as well.

In the example used in "Code Generation" on page 9-5, the following . cl ass files
would be produced in the appropriate directory (given package information in the
source code):

« Foo.class

9-8 SQLJ Developer's Guide and Reference

Internal Translator Operations

« Foo_SJProfil eKeys. cl ass
« a.cl ass file for each additional class you defined in Foo. sql j

=« a.cl ass file for each iterator and connection context class you declared in
Foo. sqgl j (whether public or private)

To ensure that . cl ass files generated by the compiler and profiles generated by
SQLJ (whether . ser or. cl ass) will be located in the same directory, SQLJ passes
its - d option to the Java compiler. If the - d option is not set, then . cl ass files and
profiles are placed in the same directory as the generated . j ava file (which is
placed according to the - di r option setting).

In addition, so that SQLJ and the Java compiler will use the same encoding, SQLJ
passes its - encodi ng option to the Java compiler (unless the SQLJ

-conpi | er - encodi ng- f | ag is turned off). If the - encodi ng option is not set,
SQLJ and the compiler will use the setting in the JVM f i | e. encodi ng property.

By default, SQLJ invokes the standard j avac compiler of the Sun Microsystems
JDK, but other compilers can be used instead. You can request that an alternative
Java compiler be used by setting the SQLJ - conpi | er - execut abl e option.

Note: If you are using the SQLJ - encodi ng option but using a
compiler that does not have an - encodi ng option, turn off the
SQLJ - conpi | er - encodi ng- f | ag (otherwise SQLJ will attempt
to pass the - encodi ng option to the compiler).

For information about compiler-related SQLJ options, see the following:

« "Output Directory for Generated .ser and .class Files (-d)" on page 8-27

« "Encoding for Input and Output Source Files (-encoding)" on page 8-26

« "Options to Pass to the Java Compiler (-C)" on page 8-49

« "Compilation Flag (-compile)" on page 8-53

« "Compiler Encoding Support (-compiler-encoding-flag)" on page 8-67

« "Name of the Java Compiler (-compiler-executable)" on page 8-66

« "Compiler Output File (-compiler-output-file)" on page 8-68

« "Compiler Message Output Pipe (-compiler-pipe-output-flag)" on page 8-68

Translator and Runtime Functionality 9-9

Internal Translator Operations

Profile Customization

After Java compilation, the generated profiles (which contain information about
your embedded SQL instructions) are customized so that your application can work
efficiently with your database and use vendor-specific extensions.

To accomplish customization, SQLJ invokes a front end called the customizer harness,
which is a Java class that functions as a command-line utility. The harness, in turn,
invokes a particular customizer, either the default Oracle customizer or a
customizer that you specify by SQLJ option settings.

During customization, profiles are updated in two ways:

« toallow your application to use any vendor-specific database types or features,
if applicable

« to tailor the profiles so that your application is as efficient as possible in using
features of the relevant database environment

Without customization, you can access and use only standard JDBC types.

For example, the Oracle customizer can update a profile to support an Oracle8i
PERSON type that you had defined. You could then use PERSON as you would any
other supported datatype.

You also must customize with the Oracle customizer to utilize any of the
oracl e. sqgl type extensions.

Note:

« The Oracle SQLJ runtime and an Oracle JDBC driver will be
required by your application whenever you use the Oracle
customizer during translation, even if you do not use Oracle
extensions in your code.

« The generic SQLJ runtime will be used if your application has
no customizations, or none suitable for the connection.

= You can customize previously created profiles by specifying
. ser files, or . j ar files containing . ser files, on the
command line. But you cannot do this in the same running of
SQLJ where translations are taking place. You can specify
.ser /. j ar files to be customized or. sql j /. j ava files to be
translated and compiled, but not both. For more information
about how . j ar files are used, see "Use of JAR Files for
Profiles" on page 10-36.

9-10 SQLJ Developer’s Guide and Reference

Internal Translator Operations

For more information about profile customization, see Chapter 10, "Profiles and
Customization™.

Also see the following for information about SQLJ options related to profile
customization:

« "Default Profile Customizer (-default-customizer)" on page 8-71
« "Options to Pass to the Profile Customizer (-P)" on page 8-51
« "Profile Customization Flag (-profile)" on page 8-54

« "Customization Options and Choosing a Customizer" on page 10-11

Translator and Runtime Functionality 9-11

Functionality of Translator Errors, Messages, and Exit Codes

Functionality of Translator Errors, Messages, and Exit Codes

This section provides an overview of SQLJ translator messages and exit codes.

Translator Error, Warning, and Information Messages

There are three major levels of SQLJ messages you might encounter during the
translation phase: error, warning, and information. Warning messages can be further
broken down into two levels: non-suppressable and suppressable. Therefore, there are
four message categories (in order of seriousness):

1. errors

2. non-suppressable warnings
3. suppressable warnings

4. information

You can control suppressable warnings and information by using the SQLJ - war n
option, as described below.

Error messages, prefixed by Er r or : , indicate that one of the following has been
encountered:

= acondition that would prevent compilation (for example, the source file
contains a public class whose name does not match the base file name)

= acondition that would result in a runtime error if the code were executed (for
example, the code attempts to fetch a VARCHAR into aj ava. uti | . Vect or,
using an Oracle JDBC driver)

If errors are encountered during SQLJ translation, then no output is produced
(. j ava file or profiles), and compilation and customization are not executed.

Non-suppressable warning messages, prefixed by War ni ng: , indicate that one of
the following has been encountered:

« acondition that would probably, but not necessarily, result in a runtime error if
the code were executed (for example, a SELECT statement whose output is not
assigned to anything)

= acondition that compromises SQLJ’s ability to verify runtime aspects of your
source code (for example, not being able to connect to the database you specify
for online checking)

« acondition that presumably resulted from a coding error or oversight

9-12 SQLJ Developer’s Guide and Reference

Functionality of Translator Errors, Messages, and Exit Codes

SQLJ translation will complete if a non-suppressable warning is encountered, but
you should analyze the problem and determine if it should be fixed before running
the application. If online checking is specified but cannot be completed, offline
checking is performed instead.

Note: For logistical reasons, the parser that the SQLJ translator
employs to analyze SQL operations is not the same top-level parser
that will be used at runtime. Therefore, errors might occasionally be
detected during translation that will not actually cause problems
when your application runs. Accordingly, such errors are reported
as non-suppressable warnings, rather than fatal errors.

Suppressable warning messages, also prefixed by War ni ng: , indicate that there is a
problem with a particular aspect of your application, such as portability. An
example of this is using an Oracle-specific type such as or acl e. sgl . NUMBER to
read from or write to the database.

Informational or status messages prefixed by | nf o: do not indicate an error
condition. They merely provide additional information about what occurred during
the translation phase.

Suppressable warning and status messages can be suppressed by using the various
- war n option flags:

=« precision/noprecisi on—The nopr eci si on setting suppresses warnings
regarding possible loss of data precision during conversion.

« null s/ nonul | s—The nonul | s setting suppresses warnings about possible
runtime errors due to nullable columns or types.

« portabl e/ noportabl e—The noport abl e setting suppresses warnings
regarding SQLJ code that uses Oracle-specific features or might otherwise be
non-standard and, therefore, not portable to other environments.

« strict/nostrict—Thenostrict setting suppresses warnings issued if
there are fewer columns in a named iterator than in the selected data that is to
populate the iterator.

« Vverbose/ nover bose—The nover bose setting suppresses status messages
that are merely informational and do not indicate error or warning conditions.

See "Translator Warnings (-warn)" on page 8-42 for more information about the
- war n option and how to set the flags.

Translator and Runtime Functionality 9-13

Functionality of Translator Errors, Messages, and Exit Codes

If you receive warnings during your SQLJ translation, then you can try running the
translator again with - war n=none to see if any of the warnings are of the more
serious (non-suppressable) variety.

Notes: For information about particular error, warning, and
information messages, see "Translation Time Messages" on page B-2
and "Runtime Messages" on page B-44.

Table 9-1 summarizes the categories of error and status messages generated by the
SQLJ translator.

Table 9—-1 SQLJ Translator Error Message Categories

Message Category Prefix Indicates Suppressed By

Error Error: fatal error that will cause n/a
compilation failure or runtime
failure (translation is aborted)

Non-suppressable War ni ng: condition that prevents proper n/a
warning translation or might cause
runtime failure (translation is
completed)
Suppressable warning War ni ng: problem regarding a particular - war n option flags:
aspect of your application nopr eci si on
(translation is completed) nonul | s
noport abl e
nostrict
Informational/status | nf o: information regarding the - war n option flags:
message translation process nover bose

Translator Status Messages

In addition to the translator’s error, warning, and information messages, SQLJ can
produce status messages throughout all phases of SQLJ operation—translation,
compilation, and customization. Status messages are output as each file is processed
and at each phase of SQLJ operation.

You can control status messages by using the SQLJ - st at us option. This option is
also discussed in "Real-Time Status Messages (-status)" on page 8-44.

9-14 SQLJ Developer’s Guide and Reference

Functionality of Translator Errors, Messages, and Exit Codes

Translator Exit Codes

The following exit codes are returned by the SQLJ translator to the operating system
upon completion:

=« 0=noerror in execution

« 1=errorin SQLJ execution

« 2 =error inJava compilation

« 3 =error in profile customization

« 4 =errorin class instrumentation (the optional mapping of line numbers from
your . sql j source file to the resulting . cl ass file)

« 5=errorinser2cl ass conversion (the optional conversion of profile files
from . ser filesto . cl ass files)

Notes:

« Ifyouissue the - hel p or - ver si on option, then the SQLJ exit
code is 0.

« Ifyou run SQLJ without specifying any files to process, then
SQLJ issues help output and returns exit code 1.

Translator and Runtime Functionality 9-15

SQLJ Runtime

SQLJ Runtime

This section presents information about the Oracle SQLJ runtime, which is a thin
layer of pure Java code that runs above the JDBC driver. When Oracle SQLJ
translates your SQLJ source code, embedded SQL commands in your Java
application are replaced by calls to the SQLJ runtime. Runtime classes act as
wrappers for equivalent JDBC classes, providing special SQLJ functionality. When
the end user runs the application, the SQLJ runtime acts as an intermediary, reading
information about your SQL operations from your profile and passing instructions
along to the JDBC driver.

A SQLJ runtime can be implemented to use any JDBC driver or vendor-proprietary
means of accessing the database. The Oracle SQLJ runtime requires a JDBC driver
but can use any standard JDBC driver. To use Oracle-specific database types and
features, however, you must use an Oracle JDBC driver. For the purposes of this
document, it is generally assumed that you are using an Oracle database and one of
the Oracle JDBC drivers.

Notes:

« The generic SQLJ runtime will be used if your application has
no customizations, or none suitable for the connection.

« The Oracle SQLJ runtime and an Oracle JDBC driver will be
required by your application whenever you use the Oracle
customizer during translation, even if you do not use Oracle
extensions in your code.

Runtime Packages

The Oracle SQLJ runtime includes packages that you will likely import and use
directly, and others that are used only indirectly.

Note: These packages are included in the runti nme. zi p file,
which contains classes used only at runtime, in addition to being in
thet ransl at or. zi p file.

Packages Used Directly

This section lists packages containing classes you can import and use directly in
your application. Packages whose names begin with or acl e are for Oracle-specific
SQLJ features.

9-16 SQLJ Developer’s Guide and Reference

SQLJ Runtime

sqlj.runtine

This package includes the Execut i onCont ext class, Connect i onCont ext
interface, Resul t Set | t er at or interface, and wrapper classes for streams
(binary, ASCII, and Unicode).

Interfaces and abstract classes in this package are implemented by classes in the
sqlj.runtime. ref package or by classes generated by the SQLJ translator.

sqlj.runtine.ref

The classes in this package implement interfaces and abstract classes in the

sql j . runti me package. You will likely use the

sqlj.runtinme. ref. Def aul t Cont ext class, which is used to specify your
default connection and create default connection context instances. The other
classes in this package are used internally by SQLJ in defining classes during
code generation, such as iterator classes and connection context classes that you
declare in your SQLJ code.

oracle.sqglj.runtinme

This package contains the Or acl e class that you can use to instantiate the

Def aul t Cont ext class and establish your default connection. It also contains
Oracle-specific runtime classes used by the Oracle implementation of SQLJ,
including functionality to convert to and from Oracle type extensions.

Packages Used Indirectly
This section lists packages containing classes that are for internal use by SQLJ.

sqlj.runtine.profile

This package contains interfaces and abstract classes that define what SQLJ
profiles look like. This includes the Ent r yI nf o class and Typel nf o class. Each
entry in a profile is described by an Ent r yl nf o object (where a profile entry
corresponds to a SQL operation in your application). Each parameter in a
profile entry is described by a Typel nf o object.

The interfaces and classes in this package are implemented by classes in the
sqlj.runtine.profile.ref package.

sqlj.runtinme.profile.ref

This package contains classes that implement the interfaces and abstract classes
ofthesqglj.runtime. profil e package, and are used internally by the SQLJ
translator in defining profiles. It also provides the default JDBC-based runtime

implementation.

Translator and Runtime Functionality 9-17

SQLJ Runtime

« sqglj.runtinme.error

This package, used internally by SQLJ, contains resource files for all generic
(non-Oracle-specific) error messages that can be generated by the SQLJ
translator.

« oracle.sqlj.runtinme.error

This package, used internally by SQLJ, contains resource files for all
Oracle-specific error messages that can be generated by the SQLJ translator.

Categories of Runtime Errors
Runtime errors can be generated by any of the following:
« SQLJruntime
« JDBC driver
« RDBMS

In any of these cases, a SQL exception is generated as an instance of the
j ava. sql . SQLExcept i on class or a subclass (such as
sqlj.runtime. SQLNul | Excepti on).

Depending on where the error came from, there might be meaningful information
you can retrieve from an exception using the get SQLSt at e(), get Err or Code() ,
and get Message() methods. SQLJ errors, for example, include meaningful SQL
states and messages. For information, see "Retrieving SQL States and Error Codes"
on page 4-25.

If errors are generated by the Oracle JDBC driver or RDBMS at runtime, look at the
prefix and consult the appropriate documentation:

« Oracle8i JDBC Developer’s Guide and Reference for JDBC errors
« Oracle8i Error Messages reference for RDBMS errors

For a list of SQLJ runtime errors, see "Runtime Messages" on page B-44.

9-18 SQLJ Developer’s Guide and Reference

NLS Support in the Translator and Runtime

NLS Support in the Translator and Runtime

Oracle SQLJ uses Java’s built-in NLS capabilities. This section discusses the basics of
SQLJ support for NLS and native character encoding, starting with background
information covering some of the implementation details of character encoding and
language support in Oracle SQLJ. This is followed by discussion of options
available through the Oracle SQLJ command line that allow you to adjust your NLS
configuration.

Some prior knowledge of Oracle NLS is assumed, particularly regarding character
encoding and locales. For information, see the Oracle8i National Language Support
Guide.

Character Encoding and Language Support
There are two main areas of SQLJ NLS support:
« character encoding

There are three parts to this: 1) character encoding for reading and generating
source files during SQLJ translation; 2) character encoding for generating error
and status messages during SQLJ translation; and 3) character encoding for
generating error and status messages when your application runs.

« language support

This determines which translations of error and status message lists are used
when SQLJ outputs messages to the user, either during SQLJ translation or
SQLJ runtime.

NLS functionality at runtime is transparent to the user, presuming your SQLJ source
code and SQL character data use only characters that are within the database
character set. SQL character data is transparently mapped into and out of Unicode.

Note that for multi-language applications, it is advisable to use a database that
understands Unicode.

Translator and Runtime Functionality 9-19

NLS Support in the Translator and Runtime

Notes:

« The SQLJ translator fully supports Unicode 2.0 and Java
Unicode escape sequences. The SQLJ command-line utility,
however, does not support Unicode escape sequences—you can
use only native characters supported by the operating system.
Command-line options requiring Unicode escape sequences
can be entered in a SQLJ properties file instead, because
properties files do support Unicode escape sequences.

« Encoding and conversion of characters in your embedded SQL
operations, and characters read from or written to the database,
are handled by JDBC directly; SQLJ does not play a role in this.
If online semantics-checking is enabled during translation,
however, you will be warned if there are characters within the
text of your SQL DML operations that might not be convertible
to the database character set.

« For information about JDBC NLS functionality, see the Oracle8i
JDBC Developer’s Guide and Reference.

Overview of Character Encoding
The character encoding setting for source files tells Oracle SQLJ two things:

« how source code is represented in . sql j and . j ava input files that the SQLJ
translator must read

« how SQLJ should represent source code in . j ava output files that it generates

By default, SQLJ uses the encoding indicated by the VM fi | e. encodi ng
property. If your source files use other encodings, then you must indicate this to
SQLJ so that appropriate conversion can be performed.

Use the SQLJ - encodi ng option to accomplish this. SQLJ also passes the
- encodi ng setting to the compiler for it to use in reading . j ava files (unless the
SQLJ - conpi | er - encodi ng-f | ag is off).

Note: Do notalter thefil e. encodi ng property to specify
encodings for source files. This might impact other aspects of your
Java operation and might offer only a limited number of encodings,
depending on platform or operating system considerations.

9-20 SQLJ Developer’s Guide and Reference

NLS Support in the Translator and Runtime

The character encoding setting also determines how SQLJ error and status messages
are represented when output to the user, either during translation or during
runtime when the end user is running the application. This is set according to the
file.encodi ng property and is unaffected by the SQLJ - encodi ng option.

For source file encoding, you can use the - encodi ng option to specify any
character encoding supported by your Java environment. If you are using the Sun
Microsystems JDK, these are listed in the nati ve2asci i documentation, which
you can find at the following Web site:

http://ww j avasof t. comd product s/ j dk/ 1. 1/ docs/ t ool docs/ sol ari s/ native2ascii . ht n
Dozens of encodings are supported by the Sun Microsystems JDK. These include

8859_1 through 8859_9 (ISO Latin-1 through ISO Latin-9), JI S (Japanese), SJI S
(shift-JIS, Japanese), and UTF8.

Notes:

« Acharacter that is not representable in the encoding used, for
either messages or source files, can always be represented as a
Java Unicode escape sequence (of the form \ uHHHH where each
H is a hexadecimal digit).

« Asa.sqlj source file is read and processed during
translation, error messages quote source locations based on
character position (not byte position) in the input encoding.

« Encoding settings, either set through the SQLJ - encodi ng
option or the Javafi | e. encodi ng setting, do not apply to
Java properties files—sql j . properti es and
connect . properti es, for example. Properties files always
use the encoding 8859_1. This is a feature of Java in general,
not SQLJ in particular. You can, however, use Unicode escape
sequences in a properties file. (You can use the nat i ve2asci i
utility to determine escape sequences—see "Using native2ascii
for Source File Encoding" on page 9-26.)

Overview of Language Support

SQLJ error and status reporting, either during translation or during runtime, uses
the Java locale setting in the JVM user . | anguage property. Users typically do not
have to alter this setting.

Translator and Runtime Functionality 9-21

NLS Support in the Translator and Runtime

Language support is implemented through message resources that use key/value
pairs. For example, where an English-language resource has a key/value pair of

"OkKey", "Okay",a German-language resource has a key/value pair of
"OkKey", "@Gut".The locale setting determines which message resources are
used.

SQLJ supports locale settings of en (English), de (German), fr (French),andj a
(Japanese).

Note: Java locale settings can support country and variant
extensions in addition to language extensions. For example,
consider Err or Messages_de_CH var 1, where CHis the Swiss
country extension of German, and var 1 is an additional variant.
SQLJ, however, currently supports only language extensions (de in
this example), ignoring country and variant extensions.

SQLJ and Java Settings for Character Encoding and Language Support

Oracle SQLJ provides syntax that allows you to set the following:

« the character encoding used by the SQLJ translator and Java compiler in
representing source code

Use the SQLJ - encodi ng option.

« the character encoding used by the SQLJ translator and runtime in representing
error and status messages

Use the SQLJ - J prefix to set the Javafi | e. encodi ng property.

« thelocale used by the SQLJ translator and runtime for error and status
messages

Use the SQLJ - J prefix to set the Java user . | anguage property.

Setting Character Encoding for Source Code

Use the SQLJ - encodi ng option to determine the character encoding used in
representing . sql j files read by the translator, . j ava files generated by the
translator, and . j ava files read by the compiler (the option setting is passed by
SQLJ to the compiler, unless the SQLJ - conpi | er - encodi ng- f | ag is off).

This option can be set on the command line or SQLJ_OPTI ONS environment
variable, as in the following example:

9-22 SQLJ Developer’s Guide and Reference

NLS Support in the Translator and Runtime

-encodi ng=SJI S

Or it can be set in a SQLJ properties file as follows:

sql j . encodi ng=SJI S

If the encoding option is not set, then both the translator and compiler will use the
encoding specified in the VM f i | e. encodi ng property. This can also be set
through the SQLJ command line, as discussed in "Setting Character Encoding and
Locale for SQLJ Messages" on page 9-23.

For more information, see "Encoding for Input and Output Source Files (-encoding)"
on page 8-26 and "Compiler Encoding Support (-compiler-encoding-flag)" on
page 8-67.

Note: If your - encodi ng is to be set routinely to the same value,
then it is most convenient to specify it in a properties file, as in the
second example above. For more information, see "Properties Files
for Option Settings" on page 8-13.

Setting Character Encoding and Locale for SQLJ Messages

Character encoding and locale for SQLJ error and status messages output to the
user, during both translation and runtime, are determined by the Java
file.encodi nganduser. | anguage properties. Although it is typically not
necessary, you can set these and other JVM properties in the SQLJ command line by
using the SQLJ - J prefix. Options marked by this prefix are passed to the JVM.

Set the character encoding as in the following example (which specifies shift-JI S
Japanese character encoding):

-J-Kile. encodi ng=SJI S

Note: Only a limited number of encodings might be available,
depending on platform or operating system considerations.

Set the locale as in the following example (which specifies Japanese locale):

-J- Duser. | anguage=j a

Translator and Runtime Functionality 9-23

NLS Support in the Translator and Runtime

The - J prefix can be used on the command line or SQLJ_OPTI ONS environment
variable only. It cannot be used in a properties file, because properties files are read
after the JVM is invoked.

Notes:

« Ifyourfile.encoding,user. | anguage, or any other Java
property is to be set routinely to the same value, it is most
convenient to specify - J settings in the SQLJ_OPTI ONS
environment variable. This way, you do not have to repeatedly
specify them on the command line. The syntax is essentially the
same as on the command line. For more information, refer to
"SQLJ_OPTIONS Environment Variable for Option Settings" on
page 8-17.

« Remember that if you do not set the SQLJ - encodi ng option,
then setting f i | e. encodi ng will affect encoding for source
files as well as error and status messages.

« Beaware that altering the fi | e. encodi ng property might
have unforeseen consequences on other aspects of your Java
operations; furthermore, any new setting must be compatible
with your operating system.

For additional information about the SQLJ - J prefix, see "Command-Line Syntax
and Operations" on page 8-10 and "Options to Pass to the Java Virtual Machine (-J)
on page 8-48.

SQLJ Command-Line Example: Setting Encoding and Locale

Following is a complete SQLJ command line, including JVM fi | e. encodi ng and
user . | anguage settings:

sqlj -encodi ng=8859 1 -J-IXil e. encodi ng=SJI S - J-Duser . | anguage=j a Foo. sql j

This example uses the SQLJ - encodi ng option to specify 8859_1 (Latin-1)
encoding for source code representation during SQLJ translation. This encoding is
used by the translator in reading the . sqgl j input file and in generating the . j ava
output file. The encoding is then passed to the Java compiler to be used in reading
the generated . j ava file. (The - encodi ng option, when specified, is always
passed to the Java compiler unless the SQLJ - conpi | er - encodi ng-f | ag is
disabled.)

9-24 SQLJ Developer’s Guide and Reference

NLS Support in the Translator and Runtime

For error and status messages output during translation of Foo. sql j , the SQLJ
translator uses the SJ1 S encoding and the j a locale.

NLS Manipulation Outside of SQLJ

This section discusses ways to manipulate your NLS configuration outside of SQLJ.

Setting Encoding and Locale at Application Runtime

As with any end user running any Java application, those running your SQLJ
application can specify JVM properties suchasfi | e. encodi ng and

user . | anguage directly, as they invoke the JVM to run your application. This
determines the encoding and locale used for message output as your application
executes.

They can accomplish this as in the following example:

java -Ofil e. encodi ng=SJI S - Duser. | anguage=j a Foo

This will use SJI S encoding and Japanese locale.

Using API to Determine Java Properties

In Java code, you can determine values of Java properties by using the
java.l ang. Syst em get Property() method, specifying the appropriate
property. For example:

public class Settings

{
public static void main (Sring[] args)
{
Systemout. println("Encoding: " + Systemget Property("file. encodi ng")
+ ", Language: " + Systemget Property("user.|anguage"));
}
}

You can compile this and run it as a standalone utility.

There is also a get Properti es() method that returns the values of all properties,
but this will raise a security exception if you try to use it in code that runs in the
server.

You can get information about j ava. | ang. Syst emat the following Web site:

http://ww j avasof t. com product s/ j dk/ 1. 1/ docs/ api / j ava. | ang. System ht m

Translator and Runtime Functionality 9-25

NLS Support in the Translator and Runtime

Using native2ascii for Source File Encoding

If you are using the Sun Microsystems JDK, there is an alternative to having SQLJ
do the character encoding for your source files. You can use the utility

nati ve2ascii toconvert sources with native encoding to sources in 7-bit ASCII
with Unicode escape sequences.

Note: To use SQLJ to translate source created by nati ve2asci i,
ensure that the JVM that invokes SQLJhasafi | e. encodi ng
setting that supports some superset of 7-bit ASCII. This is not the
case with settings for EBCDIC or Unicode encoding.

Run nati ve2ascii as follows:

%native2ascii <options> <inputfile> <outputfil e>

Standard input or standard output are used if you omit the input file or output file.
Two options are supported:

« -reverse (reverse the conversion; convert from Latin-1 or Unicode to native
encoding)

« -encodi ng <encodi ng>
For example:

%nat i ve2ascii -encodi ng SJI S Foo. sqlj Tenp.sdqlj

For more information see the following Web site:

http://ww j avasof t. comd product s/ j dk/ 1. 1/ docs/ t ool docs/ sol ari s/ nati ve2ascii . ht n

9-26 SQLJ Developer’s Guide and Reference

10

Profiles and Customization

Profiles and profile customization are introduced in "SQLJ Profiles" on page 1-6.

This chapter presents more technical detail and discusses customizer options and
how to use customizers other than the default Oracle customizer.

The following topics are covered:

More About Profiles

More About Profile Customization

Customization Options and Choosing a Customizer
Use of JAR Files for Profiles

SQLCheckerCustomizer for Profile Semantics-Checking

Profiles and Customization 10-1

More About Profiles

More About Profiles

SQLJ profiles contain information about your embedded SQL operations, with a
separate profile being created for each connection context class that your
application uses. Profiles are created during the SQLJ translator’s code generation
phase and customized during the customization phase. Customization enables your
application to use vendor-specific database features. Separating these
vendor-specific operations into your profiles enables the rest of your generated code
to remain generic.

Each profile contains a series of entries for the SQLJ statements that use the relevant
connection context class, where each entry corresponds to one SQL operation in
your application.

Profiles exist as serialized objects stored in resource files packaged with your
application. Because of this, profiles can be loaded, read, and modified (added to or
re-customized) at any time. When profiles are customized, information is only
added, never removed. Multiple customizations can be made without losing
preceding customizations, so that your application maintains the capability to run
in multiple environments. This is known as binary portability.

For profiles to have binary portability, SQLJ industry-standard requirements have
been met in the Oracle SQLJ implementation.

Creation of a Profile During Code Generation
During code generation, the translator creates each profile as follows:

1. ltcreates a profile object as an instance of the
sqlj.runtinme.profile.Profil e class.

2. Itinserts information about your embedded SQL operations (for SQLJ
statements that use the relevant connection context class) into the profile object.

3. It serializes the profile object into a Java resource file, referred to as a profile file,
with a. ser file name extension.

Note: Oracle SQLIJ provides an option to have the translator
automatically convert these . ser filesto. cl ass files (. ser files
are not supported by some browsers). However, this prevents any
further customization of the profile. For information, see
"Conversion of .ser File to .class File (-ser2class)" on page 8-56.

10-2 SQLJ Developer’s Guide and Reference

More About Profiles

As discussed in "Code Generation" on page 9-5, profile file names for application
Foo are of the form:

Foo SJProfil en. ser

SQLJ generates Foo_SJProfi | e0. ser, Foo_SJProfil el. ser,and soon, as
needed (depending on how many connection context classes you use in your code).
Or, if the - ser 2cl ass option is enabled, then SQLJ generates

Foo SJProfil e0.cl ass,Foo_SJProfilel. cl ass, and so on.

Each profile has a get Connect edPr of i | e() method that is called during SQLJ
runtime. This method returns something equivalent to a JDBC Connect i on object,
but with added functionality. This is further discussed in "Functionality of a
Customized Profile at Runtime" on page 10-9.

Note: Referring to a "profile object" indicates that the profile is in
its original non-serialized state. Referring to a "profile file" indicates
that the profile is in its serialized state in a . ser file.

Sample Profile Entry

Below is a sample SQLJ executable statement with the profile entry that would
result. For simplicity, the profile entry is presented as plain text with irrelevant
portions omitted.

Note that in the profile entry, the host variable is replaced by JDBC syntax (the
guestion mark).

SQLJ Executable Statement
Presume the following declaration:

#sqgl iterator Iter (double sal, Sring enane);

And presume the following executable statements:

String empname ='Smith’;
lterit;

#sqlit={ SELECT ename, sal FROM emp WHERE ename = :empname };

Corresponding SQLJ Profile Entry

Profiles and Customization 10-3

More About Profiles

#sgl { SELECT enanme, sal FROMenp WHERE enane = ? };

PREPARED STATEMENT execut ed vi a EXEQUTE QUERY

role is QERY

descriptor is null

contai ns one par anet er

1. node: IN java type: java.lang. Sring (java.lang. String),
sgl type: VARCHAR nane: enane,

result set type is NAMED RESUT

result set name is lter

contains 2 result col ums

1. node: QUJT, java type: double (double),
sql type: DOBLE nane: sal,

2. node: QJT, java type: java.lang.String (java.lang. Sring),
sgl type: VARCHAR nane: enane,

Note: This profile entry is presented here as text for convenience
only; profiles are not actually in text format. They can be printed as
text, however, using the SQLJ - P- pri nt option, as discussed in
"Overview of Customizer Harness Options" on page 10-11.

10-4 SQLJ Developer’s Guide and Reference

More About Profile Customization

More About Profile Customization

By default, running the sql j script on a SQLJ source file includes an automatic
customization process, where each profile created during the translator’s code
generation phase is customized for use with your particular database. The default
customizer is the Oracle customizer, or acl e. sql j . runti me. Or aCust omi zer,
which optimizes your profiles to use type extensions and performance
enhancements specific to Oracle8i databases.

You can also run the sql j script to customize profiles created previously. On the
SQLJ command line, you can specify . ser files individually, . j ar files containing
. ser files, or both.

Notes:

« Whenever you use the default Oracle customizer during
translation, your application will require the Oracle SQLJ
runtime and an Oracle JDBC driver when it runs, even if you
do not use Oracle extensions in your code.

« Ifan application has no customizations, or none suitable for the
connection, then the generic SQLJ runtime is used.

= You can run SQLJ to process . sql j and/or. j ava files
(translation, compilation, and customization) or to process
. ser and/or . j ar files (customization only), but not both
categories at once.

Overview of the Customizer Harness and Customizers

Regardless of whether you use the Oracle customizer or an alternative customizer,
SQLJ uses a front-end customization utility known as the customizer harness in
accomplishing your customizations.

When you run SQLJ, you can specify customization options for the customizer
harness (for general customization settings that apply to any customizer you use)
and for your customizer (for settings used by the particular customizer). In either
case, you can specify these option either on the command line or in a properties file.
This is discussed in "Customization Options and Choosing a Customizer" on

page 10-11.

Profiles and Customization 10-5

More About Profile Customization

Implementation Details The following paragraphs detail how Oracle implements the
customizer harness and the Oracle customizer. This information is not necessary for
most SQLJ developers.

The customizer harness is a command-line tool that is an instance of the class
sqlj.runtine.profile.util.CustonizerHarness. A

Cust om zer Har ness object is created and invoked each time you run the SQLJ
translator. During the customization phase, the harness creates and invokes an
object of the customizer class you are using (such as the default Oracle customizer),
and loads your profiles.

The Oracle customizer is defined in the

oracle.sqglj.runtine.OraCustom zer class. All customizers must be
JavaBeans components that adhere to the JavaBeans API to expose their properties
and must implement the sql j . runtinme. profile.util.ProfileCustoni zer
interface, which specifies a cust om ze() method. It is the implementation of this
method in a particular customizer that does the work of customizing profiles.

For each profile to be customized, the customizer harness calls the cust oni ze()
method of the customizer object.

Steps in the Customization Process

The SQLJ customization process during translation consists of the following steps,
as applicable, either during the customization stage of an end-to-end SQLJ run, or
when you run SQLJ to customize existing profiles only:

1. SQLJinstantiates and invokes the customizer harness and passes it any general
customization options you specified.

2. The customizer harness instantiates the customizer you are using and passes it
any customizer-specific options you specified.

3. The customizer harness discovers and extracts the profile files within any . j ar
files (applicable when you run SQLJ for customization only, specifying one or
more . j ar files on the command line).

4. The customizer harness deserializes each profile file into a profile object (. ser
files automatically created during an end-to-end SQLJ run, . ser files specified
on the command line for customization only, or . ser files extracted from . j ar
files specified on the command line for customization only).

5. If the customizer you use requires a database connection, the customizer
harness establishes that connection.

10-6 SQLJ Developer’s Guide and Reference

More About Profile Customization

6. For each profile, the harness calls the cust omi ze() method of the customizer
object instantiated in step 2 (customizers used with Oracle SQLJ must have a
cust oni ze() method).

7. For each profile, the cust om ze() method typically creates and registers a
profile customization within the profile. (This depends on the intended
functionality of the customizer, however. Some might have a specialized
purpose that does not require a customization to be created and registered in
this way.)

8. The customizer harness reserializes each profile and puts it back into a . ser
file.

9. The customizer harness recreates the . j ar contents, inserting each customized
. ser file to replace the original corresponding uncustomized . ser file
(applicable when you run SQLJ for customization only, specifying one or more
. j ar files on the command line).

Notes:

« Ifanerror occurs during customization of a profile, the original
. ser file is not replaced.

« Ifanerror occurs during customization of any profileina. j ar
file, the original . j ar file is not replaced.

=« SQLJcan run only one customizer at a time. If you want to
accomplish multiple customizations on a single profile, you
must run SQLJ multiple times. For the additional
customizations, enter the profile name directly on the SQLJ
command line.

Creation and Registration of a Profile Customization

When the harness calls the cust oni ze() method to customize a profile, it passes
in the profile object, a JDBC Connect i on object (if you are using a customizer that
requires a connection), and an error log object (which is used in logging error
messages during the customization).

The same error log object is used for all customizations throughout a single running
of SQLJ, but its use is transparent. The customizer harness reads messages written
to the error log object and reports them in real-time to the standard output device
(whatever SQLJ uses, typically your screen).

Profiles and Customization 10-7

More About Profile Customization

Recall that each profile has a set of entries, where each entry corresponds to a SQL
operation. (These would be the SQL operations in your application that use
instances of the connection context class associated with this profile.)

A cust om ze() method implements special processing on these entries. It could
be as simple as checking each entry to verify its syntax, or it could be more
complicated, such as creating new entries that are equivalent to the original entries
but are modified to use features of your particular database.

Notes:

« Anycustom ze() processing of profile entries does not alter
the original entries.

» Customizing your profiles for use in a particular environment
does not prevent your application from running in a different
environment. You can customize a profile multiple times for
use in multiple environments, and these customizations will
not interfere with each other.

Implementation Details The following paragraphs detail how Oracle implements the
customization process. This information is not necessary for most SQLJ developers.

In the case of the Oracle customizer, the cust om ze() method creates a data
structure that has one entry for each entry in the original profile. The original
entries are never changed, but the new entries are customized to take advantage of
features of Oracle8i. For example, if you are using BLOBS, a generic get Obj ect ()
call used to retrieve a BLOB in the original entry is replaced by a get BLOB() call.

These new entries are encapsulated in an object of a customization class that
implements the sgl j . runti me. profil e. Cust oni zati on interface, and this
customization object is installed into the profile object. (Customization objects, like
profile objects, are serializable.)

The customizer harness then registers the customization, which is accomplished
through functionality of the profile object. Registration allows a profile to keep track
of the customizations that it contains.

Any errors encountered during customization are posted to the error log and
reported by the customizer harness as appropriate.

A Cust om zat i on object has an accept sConnecti on() method called at
runtime to determine if the customization can create a connected profile object for a
given JDBC Connect i on object. A connected profile object—an instance of a class

10-8 SQLJ Developer’s Guide and Reference

More About Profile Customization

that implements the sqgl j . runti me. profil e. ConnectedProfile
interface—represents a mapping between a profile object and a JDBC connection. It
is equivalent to a JDBC Connect i on object, with the ability to create statements,
but supports additional vendor-specific functionality.

Customization Error and Status Messages

The customizer harness outputs error and status messages in much the same way as
the SQLJ translator, outputting them to the same output device. None of the
warnings regarding customization are suppressable, however. (See "Translator
Error, Warning, and Information Messages" on page 9-12.)

Error messages reported by the customizer harness fall into four categories:
= unrecognized or illegal option

= connection instantiation error

« profile instantiation error

« customizer instantiation error

Status messages reported by the customizer harness during customization allow
you to determine whether a profile was successfully customized. They fall into
three categories:

« profile modification status
« . jar file modification status

« name of backup file created (if the customizer harness backup option is
enabled)

Additional customizer-specific errors and warnings might be reported by the
cust om ze() method of the particular customizer.

During customization, the profile customizer writes messages to its error log, and
the customizer harness reads the log contents in real-time and outputs these
messages to the SQLJ output device, along with any other harness output. You
never need to access error log contents directly.

Functionality of a Customized Profile at Runtime

A customized profile is a static member of the connection context class with which
it is associated. For each SQLJ statement in your application, the SQLJ runtime
determines the connection context class and instance associated with that statement,
then uses the customized profile of the connection context class, together with the

Profiles and Customization 10-9

More About Profile Customization

underlying JDBC connection of the particular connection context instance, to create
a connected profile. This connected profile is the vehicle that the SQLJ runtime uses in
applying vendor-specific features to the execution of your SQLJ application.

Implementation Details The following paragraphs details how the Oracle SQLJ
runtime uses customized profiles. This information is not necessary for most SQLJ
developers.

In executing a SQLJ statement, the SQLJ runtime uses methods of the connection
context object associated with the statement, and the profile object associated with
the connection context class, as follows:

1.

When an end user is running your application and a SQL operation is to be
executed, the SQLJ runtime calls the connection context
get Connect edPr of i | e() method.

The connection context get Connect edPr of i | e() method calls the

get Connect edPr of i | e() method of the profile object associated with the
connection context class, passing it a connection. (This is the connection
instance underlying the connection context instance used for the SQL
operation.)

The profile object get Connect edPr of i | e() method calls the

accept sConnecti on() method of each Cust oni zat i on object registered in
the profile. The first Cust om zat i on object that accepts the connection creates
the connected profile that is passed back to the runtime.

In executing the SQL operation, the connected profile is used like a JDBC
connection—creating statements to be executed—but implements special
functionality of the customization.

10-10 SQLJ Developer’s Guide and Reference

Customization Options and Choosing a Customizer

Customization Options and Choosing a Customizer

This section discusses options for profile customization, which fall into three
categories:

options you specify to the customizer harness, which apply to whatever
customizer you use

This includes general options, connection options, and options that invoke
specialized customizers.

customizer-specific options you specify to your customizer through the
customizer harness

SQLJ options, which determine basic aspects of customization, such as whether
to customize at all and which customizer to use

All categories of options are specified through the SQLJ command line or properties
files.

The following topics are included in this section:

Overview of Customizer Harness Options

General Customizer Harness Options

Customizer Harness Options for Connections

Customizer Harness Options that Invoke Specialized Customizers
Overview of Customizer-Specific Options

Oracle Customizer Options

SQLJ Options for Profile Customization

To choose a customizer other than the default Oracle customizer, you can use either
the customizer harness cust oni zer option (discussed in "Overview of Customizer
Harness Options" on page 10-11) or the SQLJ - def aul t - cust omi zer option
(discussed in "SQLJ Options for Profile Customization" on page 10-34).

Overview of Customizer Harness Options

The customizer harness provided with Oracle SQLJ offers a number of options that
are not specific to a particular customizer. The harness uses these options in its
front-end coordination of the customization process.

Profiles and Customization 10-11

Customization Options and Choosing a Customizer

Syntax for Customizer Harness Options

Customizer harness option settings on the SQLJ command line have the following
syntax:

-P- opt i on=val ue

Or, in a SQLJ properties file:

profil e. opti on=val ue

Enable boolean options (flags) either with:

-P-option

or:

-P-option=true
Boolean options are disabled by default, but you can explicitly disable them with:
-P-opt i on=f al se

This option syntax is also discussed in "Options to Pass to the Profile Customizer
(-P)" on page 8-51 and "Properties File Syntax" on page 8-14.

Options Supported by the Customizer Harness
The customizer harness supports the following general options:

« backup—Save a backup copy of the profile before customizing it.

= cont ext —Limit customizations to profiles associated with the listed
connection context classes.

« custom zer —Specify the customizer to use.

« di gest s—Specify digests for . j ar file manifests (relevant only if specifying
. j ar files to customize).

« hel p—Display customizer options (specified in SQLJ command-line only).
« Vver bose—Display status messages during customization.

The customizer harness supports the following options for customizer database
connections. As of release 8.1.6, these are used by the Oracle customizer only if you
enable its opt col s option for column definitions (for performance optimization).
In addition, they used by the SQLChecker Cust om zer if you use this specialized
customizer to perform online semantics-checking on profiles.

10-12 SQLJ Developer’s Guide and Reference

Customization Options and Choosing a Customizer

« user —Specify the user name for the connection used in this customization.

« passwor d—Specify the password for the connection used in this
customization.

« url —Specify the URL for the connection used in this customization.

« driver —Specify the JDBC driver for the connection used in this
customization.

For information about the Oracle customizer opt col s flag, see "Oracle Customizer
Column Definition Option (optcols)" on page 10-25. For information about the
SQLChecker Cust oni zer, see "SQLCheckerCustomizer for Profile
Semantics-Checking" on page 10-38.

The following commands function as customizer harness options, but are
implemented through specialized customizers provided with Oracle SQLJ.

« debug—Insert debugging information into the specified profiles, to be output
at runtime.

« print—Output the contents of the specified profiles, in text format.

« Vverify—Perform semantics-checking on a profile that was produced during a
previous execution of the SQLJ translator (equivalent to semantics-checking
performed on source code during translation).

General Customizer Harness Options
This section describes general options supported by the customizer harness.

Profile Backup Option (backup)

Use the backup flag to instruct the harness to save a backup copy of each . j ar file
and standalone . ser file before replacing the original. (Separate backups of . ser
files that are within . j ar files are not necessary.)

Backup file names are given the extension . bakn, where n indicates digits used as
necessary where there are similarly named files. For each backup file created, an
informational message is issued.

If an error occurs during customization of a standalone . ser file, then the original

. ser file is not replaced, and no backup is created. Similarly, if an error occurs
during customization of any . ser file withina. j ar file, then the original . j ar file
is not replaced, and no backup is created.

Command-line syntax - P-backup<=t rue/fal se>

Profiles and Customization 10-13

Customization Options and Choosing a Customizer

Command-line example - P-backup
Properties file syntax profil e. backup<=t rue/fal se>
Properties file example profil e. backup

Default value fal se

Customization Connection Context Option (context)

Use the cont ext option to limit customizations to profiles that correspond to the
specified connection context classes. Fully qualify the class names and use a
comma-separated list to specify multiple classes. For example:

-P-context=sqlj.runtine.ref.Def aul t Gont ext, f oo. bar . MG xt d ass

There must be no space on either side of the comma.

If this option is not specified, then all profiles are customized, regardless of their
associated connection context classes.

Command-line syntax - P-cont ext =ct x_cl assl1<, ctx_class2, ...>
Command-line example - P- cont ext =f 0o. bar. M/Ct xt A ass

Properties file syntax profile. context=ctx cl assl<, ctx _class2, ...>
Properties file example profil e. cont ext =f oo. bar . My xt d ass

Default value none (customize all profiles)

Customizer Option (customizer)

Use the cust oni zer option to specify which customizer to use. Fully qualify the
class name, such as in the following example:

-P-custom zer=oracl e. sqlj . runti ne. util.C aCust onizer

If you do not set this option, then SQLJ will use the customizer specified in the SQLJ
-def aul t - cust omi zer option. Unless set otherwise, this is the following:

oracle.sqlj.runtine. util.QaQustom zer

Command-line syntax - P- cust om zer =cust oni zer_cl ass

10-14 SQLJ Developer’s Guide and Reference

Customization Options and Choosing a Customizer

Command-line example - P- cust om zer =a. b. c. MyQust om zer
Properties file syntax profil e. cust om zer=cust oni zer_cl ass
Properties file example profil e. cust om zer=a. b. c. MyQust omi zer

Default value none (use default, set in SQLJ - def aul t - cust oni zer option)

Customization JAR File Digests Option (digests)

Whena. j ar fileis produced, the j ar utility can optionally include one or more
digests for each entry, based on one or more specified algorithms, so that the
integrity of the . j ar file entries can later be verified. Digests are similar
conceptually to checksums, for readers familiar with those.

If you are customizing profilesina. j ar file and want the j ar utility to add new
digests (or update existing digests) when the . j ar file is updated, then use the

di gest s option to specify a comma-separated list of one or more algorithms. These
are the algorithms that j ar will use in creating the digests for each entry. Thej ar
utility produces one digest for each algorithm for each . j ar file entry in the j ar
manifest file. Specify algorithms as follows:

- P- di gest s=SHA Mb

There must be no space on either side of the comma.

In this example, there will be two digests for each entry in the . j ar manifest
file—an SHA digest and an MD5 digest.

For information about . j ar files and the j ar utility, see the following Web site:

http://ww j avasof t. comd product s/ j dk/ 1. 1/ docs/ gui de/ j ar/ i ndex. ht m
Command-line syntax - P-di gest s=al gol<, al go2,...>

Command-line example - P- di gest s=SHA, M6

Properties file syntax profil e. di gest s=al gol<, al go2, ... >

Properties file example profil e. di gest s=SHA M®b

Default value SHA, MbB

Profiles and Customization 10-15

Customization Options and Choosing a Customizer

Customization Help Option (help)

Use the hel p option to display the option lists of the customizer harness and the
default customizer or a specified customizer. For the harness and Oracle customizer,
this includes a brief description and the current setting of each option.

Display the option lists for the harness and default customizer as follows (where the
default customizer is the Oracle customizer or whatever you have specified in the
SQLJ - def aul t - cust oni zer option):

-P-hel p
Use the hel p option in conjunction with the cust om zer option to display the
option list of a particular customizer, as follows:

-P-hel p -P-custom zer=sqlj.runtine.profile.util.Auditorlnstaller

Notes:

= You can use the - P- hel p option on the SQLJ command line
only, not in a SQLJ properties file.

« No customizations are performed if the - P- hel p flag is
enabled, even if you specify profiles to customize on the
command line.

Command-line syntax -P-hel p <- P-cust oni zer =cust omi zer _cl ass>
Command-line example -P-hel p

Properties file syntax n/a

Properties file example n/a

Default value none

Customization Verbose Option (verbose)

Use the ver bose flag to instruct the harness to display status messages during
customizations. These messages are written to the standard output
device—wherever SQLJ writes its other messages.

Command-line syntax - P-ver bose<=t rue/f al se>

10-16 SQLJ Developer’s Guide and Reference

Customization Options and Choosing a Customizer

Command-line example -P-ver bose
Properties file syntax profil e. ver bose<=t rue/f al se>
Properties file example profile.ver bose

Default value none

Customizer Harness Options for Connections

This section describes connection options supported by the customizer harness. As
of release, these are used only in the following circumstances:

« The Oracle customizer uses database connections only for column definitions. If
you do not enable the Oracle customizer opt col s option, then there is no need
to set the customizer harness user, passwor d, url ,and dri ver options.

« The SQLChecker Cust onmi zer, a specialized customizer that performs
semantics-checking on profiles, uses the customizer harness user, passwor d,
url,anddri ver settings for online checking.

Note: Do not confuse the customizer harness user, passwor d,
url,anddri ver options with the translator options of the same
names, which are for semantics-checking during the translation
step and are unrelated.

Customization User Option (user)

Set the user option to specify a database schema if your customizer uses database
connections.

In addition to specifying the schema, you can optionally specify the password, URL,
or both in your user option setting. The password is preceded by a forward-slash
(/), and the URL is preceded by an "at" sign (@), as in the following examples:

-P-user=scott/tiger
-P-user=scott @dbc: oracl e: oci 8: @
-P-user=scott/tiger@dbc: oracl e: oci 8: @

Command-line syntax - P- user =user nane</ passwor d><@r | >

Command-line examples

Profiles and Customization 10-17

Customization Options and Choosing a Customizer

- P-user=scot t
-P-user=scott/tiger
-P-user=scott/tiger@dbc: oracl e: oci 8: @

Properties file syntax profil e. user=user name</ passvor d><@uir | >

Properties file examples
profil e.user=scott
profile. user=scott/tiger
profile. user=scott/tiger@dbc: oracl e: oci 8: @

Default value nul |

Customization Password Option (password)
Use the passwor d option if your customizer uses database connections.

The password can also be set with the user option, as described in "Customization
User Option (user)" on page 10-17.

Command-line syntax - P- passwor d=passuor d
Command-line example - P- passwor d=t i ger
Properties file syntax profil e. passwor d=passwvor d
Properties file example profil e. password=ti ger

Default value nul |

Customization URL Option (url)
Use the ur | option if your customizer uses database connections.

The URL can also be set with the user option, as described in "Customization User
Option (user)" on page 10-17.

Command-line syntax -P-url =ur/
Command-line example -P-url =j dbc: oracl e: oci 8: @
Properties file syntax profile. url =ur/

Properties file example profile. url =j dbc: oracl e: oci 8: @

10-18 SQLJ Developer’s Guide and Reference

Customization Options and Choosing a Customizer

Default value j dbc: or acl e: oci 8: @

Customization JDBC Driver Option (driver)

Use the dr i ver option to register a comma-separated list of JDBC drivers if your
customizer uses database connections. For example:

-P-dri ver=sun. j dbc. odbc. JdbcQlbcDxi ver, oracl e. j dbc. dri ver. Oracl eDri ver
There must be no space on either side of the comma.

Command-line syntax -P-dri ver=dvr_cl assl<, dvr_cl ass2, .. .>

Command-line example -P-dri ver=sun. j dbc. odbc. JdbcQibeDr i ver

Properties file syntax profile. driver=dvr_cl assl<, dvr_cl ass2, . ..>
Properties file example profile.dri ver=sun.j dbc. odbc. JdbcQibchx i ver

Default value oracl e. j dbc. driver. Oracl eDri ver

Customizer Harness Options that Invoke Specialized Customizers

The customizer harness supports the following options that invoke specialized
customizers:

« debug—This invokes the Audi t or | nst al | er customizer, used in debugging.
« print—This invokes a customizer that prints a text version of a profile.

« Vverify—Thisinvokes the SQLChecker Cust om zer customizer, which
performs semantics-checking on a profile.

Important: Because each of these options invokes a customizer,
and only one customizer can run in a single execution of SQLJ, you
cannot perform any other customization when you use any of these
options.

You also cannot use more than one of pri nt, debug, orverify
simultaneously.

Profiles and Customization 10-19

Customization Options and Choosing a Customizer

Profile Debug Option (specialized customizer) (debug)

The debug option runs a specialized customizer, called the Audi t or I nst al | er,
that inserts debugging statements into profiles. Use this option in conjunction with
a SQLJ command line file list to insert debugging statements into the specified
profiles. These profiles must already be customized from a previous SQLJ run.

For detailed information about this customizer, including additional options that it
supports, see "Auditorinstaller Customizer for Debugging" on page A-20.

The debugging statements will execute during SQLJ runtime (when someone runs
your application), displaying a trace of method calls and values returned.

Following are examples of how to specify the debug option:
sqlj -P-debug Foo SIProfile0.ser Bar_SJIProfil e0. ser

sqlj -P-debug *.ser

Command-line syntax sqlj -P-debug profile list

Command-line example sqglj - P-debug Foo_SJIProfile*. ser

Properties file syntax pr of i | e. debug (also specify profiles in SQLIJ file list)
Properties file example profi | e. debug (also specify profiles in SQLJ file list)

Default value n/a

Profile Print Option (specialized customizer) (print)

The pri nt option runs a specialized customizer that prints profiles in text format.
Use this option in conjunction with a SQLJ command line file list to output the
contents of one or more specified profiles. The output goes to the standard SQLJ
output device, typically the user screen.

Following are examples of how to specify the pri nt option:
sqlj -P-print Foo_SIProfile0.ser Bar_SJIProfil e0. ser

sqlj -P-print *.ser
For sample output, see "Sample Profile Entry" on page 10-3.

Command-line syntax sqlj -P-print profile_list

10-20 SQLJ Developer’s Guide and Reference

Customization Options and Choosing a Customizer

Command-line example sglj -P-print Foo_SJIProfile*.ser
Properties file syntax profi |l e. pri nt (also specify profiles in SQLIJ file list)
Properties file example profi |l e. pri nt (also specify profiles in SQLIJ file list)

Default value n/a

Profile Semantics-Checking Option (specialized customizer) (verify)

The veri fy option runs a specialized customizer, called the

SQLChecker Cust omi zer, that performs semantics-checking on a profile. This is
equivalent to the semantics-checking that is performed on source code during
translation. The profile will have been created during a previous execution of the
SQLJ translator.

This option is useful for checking semantics against the runtime database, after
deployment, and after the source code may no longer be available.

For detailed information about this customizer, including additional options that it
supports, see "SQLCheckerCustomizer for Profile Semantics-Checking" on
page 10-38.

Note: For online semantics-checking of the profile, you must also
use the customizer harness user, passwor d, and ur | options.

Following are examples of how to specify the ver i f y option. Both of these
examples use the SQLChecker Cust om zer default semantics-checker, which
employs online checking through the specified database connection.

sqlj -P-verify -P-user=scott -P-password=tiger -P-url=jdbc:oracle:oci 8 @
Foo SJProfil e0.ser Bar_SJIProfil e0. ser

(The preceding is a single wrap-around command line.)

sqlj -P-verify -P-user=scott -P-password=tiger -P-url=jdbc:oracle:oci 8: @*. ser

Command-line syntax sqlj -P-verify <conn parans> profile_|ist
Command-line example sqlj -P-verify <conn parans> Foo_SJIProfil e*. ser

Properties file syntax profile.verify

Profiles and Customization 10-21

Customization Options and Choosing a Customizer

(You must also specify profiles, and typically customizer harness connection
options, in the SQLJ command line.)

Properties file example profile.verify

(You must also specify profiles, and typically customizer harness connection
options, in the SQLJ command line.)

Default value n/a

Overview of Customizer-Specific Options

You can set customizer-specific options, such as options for the Oracle customizer,
on the SQLJ command line or in a SQLJ properties file. The syntax is similar to that
for setting customizer harness options.

Set a customizer option on the SQLJ command line by preceding it with:
-P-C

Or set it in a SQLJ properties file by preceding it with:

profile.C

This option syntax is also discussed in "Options to Pass to the Profile Customizer
(-P)" on page 8-51 and "Properties File Syntax" on page 8-14.

The remainder of this section discusses features of the Oracle customizer, which
supports several options. Most of these options are boolean and are enabled as
follows:

-P-Coption

or:

-P-Copti on=t rue

Boolean options are disabled by default, but you can explicitly disable them with:
-P- Copt i on=f al se

Numeric or string options are set similarly:

- P- Copt i on=val ue

10-22 SQLJ Developer’s Guide and Reference

Customization Options and Choosing a Customizer

Oracle Customizer Options

This section describes options that are specific to the Oracle customizer, beginning
with an overview of the options supported.

Options Supported by the Oracle Customizer
The Oracle customizer implements the following options:

« conpat —Display version compatibility information.

« for ce—Instruct the customizer to customize even if a valid customization
already exists.

« opt col s—Enable iterator column type and size definitions to optimize
performance.

« opt par ans—Enable parameter size definitions to optimize JDBC resource
allocation (used in conjunction with opt par andef aul t s).

« opt parandef aul t s—Set parameter size defaults for particular datatypes
(used in conjunction with opt par ans).

« showSQL—Display SQL statement transformations.

« st cache—Set the statement cache size (the number of statements that can
be cached for each connection during runtime) for performance optimization, or
set it to zero to disable statement caching.

« summar y—Display a summary of Oracle features used in your application.

Any output displayed by these options is written to the standard output device,
wherever SQLJ writes its other messages.

Oracle Customizer Version Compatibility Option (compat)

Use the conpat flag to instruct the Oracle customizer to display information about
compatibility of your application with different versions of the Oracle database and
Oracle JDBC drivers. This can be accomplished either during a full SQLJ translation
run or on profiles previously created.

To see compatibility output when translating and customizing the application
My App:
sqlj <...S8QJ options...> -P-Cconpat M/App. sql

In this example, the My App profiles will be created, customized, and checked for
compatibility in a single running of SQLJ.

Profiles and Customization 10-23

Customization Options and Choosing a Customizer

To see compatibility output for My App profiles previously created:
sqlj <...S8QJ options...>-P-Cconpat M/App_SIProfi | e*. ser
In this example, the My App profiles were created (and possibly customized) in a

previous running of SQLJ and will be customized (if needed) and checked for
compatibility in the above running of SQLJ.

Following are two output samples from a - P- Cconpat setting when using the
default Oracle customizer. The first example indicates that the application can be
used with all Oracle JDBC driver versions:

M/App_SIProfile0.ser: Info: conpatible with all Gacle JDOBC drivers

This second example indicates that the application can be used only with 8.1 or later
Oracle JDBC driver versions:

M/App_SIProfile0.ser: Info: compatible with Qacle 8.1 or |ater JDBC dri ver

Note: If customization does not take place because a valid
previous customization is detected, the conpat option reports
compatibility regardless.

Command-line syntax - P- Cconpat <=t rue/fal se>
Command-line example - P- Cconpat

Properties file syntax profil e. Cconpat <=t rue/f al se>
Properties file example profil e. Cconpat

Default value fal se

Oracle Customizer Force Option (force)

Use the f or ce flag to instruct the Oracle customizer to force the customization of a
given profile (specified on the command line) even if a valid customization already
exists in that profile. For example:

sqlj -P-Cforce MApp SIProfil e*. ser

This will customize all the MyApp profiles, regardless of whether they have already
been customized. Otherwise, by default, the Oracle customizer will not reinstall

10-24 SQLJ Developer’s Guide and Reference

Customization Options and Choosing a Customizer

over a previously existing customization unless the previous one had been installed
with an older version of the customizer.

Command-line syntax -P-f or ce<=true/fal se>
Command-line example -P-Gorce

Properties file syntax profile. (f orce<=t rue/fal se>
Properties file example profile. Force

Default value fal se

Oracle Customizer Column Definition Option (optcols)

Use the opt col s flag to instruct the Oracle customizer to determine types and sizes
of iterator or result set columns, and add this information to the profile. This
enables the SQLJ runtime to automatically register the columns with the Oracle
JDBC driver when your application runs, saving round trips to the database
depending on the particular driver implementation. Specifically, this is effective for
the Thin driver.

For an overview of column definitions, see "Column Definitions" on page A-16.
You can enable or disable this flag on the SQLJ command line or in a properties file.
Enable it on the command line as follows:

-P-Qoptcol s

or:

-P- Gopt col s=true

This flag is disabled by default, but you can also disable it explicitly. Disable it on
the command line as follows:

-P- Qopt col s=fal se

Column definitions require the customizer to make a database connection to
examine columns of tables being queried, so the customizer harness user,
passwor d, and ur | options must be set appropriately (as well as the customizer

harness dr i ver option if you are not using the default Or acl eDr i ver class). For
example:

sqlj <...S8@J options...> -P-user=scott/tiger@dbc: oracl e: oci 8: @- P-Copt col s M/App. sql j

Profiles and Customization 10-25

Customization Options and Choosing a Customizer

(Note that as with the SQLJ translator, you can optionally set password and URL in
the user option instead of in the passwor d and ur | options.)

Or you can insert column definitions into a previously existing profile (in this case
you must also use the Oracle customizer f or ce option to force a recustomization):

sqlj -P-user=scott/tiger @dbc: oracl e: oci 8 @-P-Jorce -P-Qoptcol s MApp_SIProfil e*. ser

Or you can insert column definitions into previously existing profilesina. j ar file:

sqlj -P-user=scott/tiger@dbc: oracl e: oci 8: @-P-Gorce -P-Qoptcol s MAppProfiles.jar

Notes:

= Because definitions are done for all columns that you select, it is
advisable in your SQL operations to explicitly select the
columns you will use, rather than using a SELECT * where
you might not actually use all the columns selected. A situation
where you select more than you need exposes you to a greater
risk of runtime errors if any changes were made to the table
between customization and runtime, especially when you have
customized with column definitions. You might want to
translate with the SQLJ - war n=st ri ct flag set, which will
warn you if additional (unwanted) columns will be selected by
your query.

= Column definitions are not possible for any iterator or result set
that includes one or more object or collection columns.

When you run the Oracle customizer with its opt col s flag enabled (either during
translation and creation of a new profile or during customization of an existing
profile), you can also enable the customizer harness ver bose flag. This will instruct
the Oracle customizer to display information about what iterators and result sets
are being processed and what their column type and size definitions are. For
example:

sqlj -P-user=scott/tiger@dbc: oracl e: oci 8: @- P- ver bose - P-Cforce -P-Copt col s M/App_SIProfi | e*. ser

For general information about the ver bose flag, see that section under "Overview
of Customizer Harness Options" on page 10-11.

10-26 SQLJ Developer’s Guide and Reference

Customization Options and Choosing a Customizer

You can execute the Oracle customizer with its summar y flag enabled on an existing
profile to determine if column definitions have been added to that profile:

sqlj -P-Csunmary M/App_SIProfil e*. ser

For general information about the summary flag, see that section under "Overview
of Customizer-Specific Options" on page 10-22.

Note: An error will be generated if you enable the Oracle
customizer opt col s option without setting the customizer harness
user name, password, and URL for a database connection. Do not
confuse this with setting the translator user name, password, and
URL for semantics-checking—these are unrelated.

The customizer does not have to connect to the same schema or
even the same database that your application will connect to at
runtime, but the relevant columns will have to be in the same order
and of identical types and sizes to avoid runtime errors.

For information about the customizer harness connection options,
see the user, password, url,and dri ver sections under
"Overview of Customizer Harness Options" on page 10-11.

Command-line syntax - P- Gopt col s<=t rue/fal se>
Command-line example -P-Copt col s

Properties file syntax profil e. Copt col s<=true/fal se>
Properties file example profile. Coptcol s

Default value fal se

Oracle Customizer Parameter Definition Option (optparams)

Use the opt par ans flag to enable parameter size definitions. If this flag is enabled,
SQLJ will register your input and output parameters (host variables) to optimize
JDBC resource allocations according to sizes you specify, with the following
precedence:

1. size specified in a source code hint, if any

Profiles and Customization 10-27

Customization Options and Choosing a Customizer

2. default size, if any, specified for the corresponding datatype in the
opt par andef aul t s option setting

If there is no source code hint or default datatype size for a given host variable, then
resource allocation is left to JDBC.

For an overview of parameter size definitions and a discussion of source code hints,
see "Parameter Size Definitions" on page A-17.

You can enable or disable the opt par ans flag on the command line or in a SQLJ
properties file.

Enable it on the command line as follows:
- P- Gopt par ans

or:

- P- Qopt par ans=t r ue

This flag is disabled by default, but you can also disable it explicitly. Disable it on
the command line as follows:

- P- Gopt par ans=f al se

Note: Unlike the opt col s option, the opt par ans option does
not require a database connection by the customizer, because you
are providing the size specifications yourself.

Following is a command-line example (omitting a setting for the
opt par andef aul t s option, which is discussed in the next section):

sqlj <...S8Q@J options...> -P-Qoptparans -P-Copt par andef aul t s=def aul t s- st ri ng M/App. sql j

Or you can enable parameter size definitions for a previously existing profile:

sqlj - P-Copt parans -P- Copt par andef aul t s=def aul t s-stri ng M/App_SIProfi | e*. ser

Or for previously existing profilesina. j ar file:

sqlj - P-Copt parans -P- Copt par andef aul t s=def aul t s-stri ng M/AppProfiles.jar

Command-line syntax - P- Copt par ans<=t rue/ f al se>

10-28 SQLJ Developer’s Guide and Reference

Customization Options and Choosing a Customizer

Command-line example - P- Copt par ans
Properties file syntax profil e. Copt parans<=t rue/f al se>
Properties file example profil e. Copt par ans

Default value fal se

Oracle Customizer Parameter Default Size Option (optparamdefaults)

If you enable the opt par ans option to set parameter sizes, use the
opt par andef aul t s option as desired to set default sizes for specified datatypes.
If opt par ans is not enabled, then any opt par andef aul t s setting is ignored.

If a host variable has a source code hint to specify its size, that takes precedence
over the corresponding datatype default size set with this option. If there is no
source code hint or corresponding datatype default size for a particular host
variable, then resource allocation for that variable is determined by the JDBC driver,
just as it would be if opt par ans were not enabled.

There is no requirement to use the opt par andef aul t s option, although it is
typically used whenever opt par ans is enabled. If opt par ans is enabled and there
are no default size settings, then resources are allocated either according to source
code hints (if any) or the JDBC driver.

For an overview of parameter size definitions and a discussion of source code hints,
see "Parameter Size Definitions" on page A-17.

You can set the opt par andef aul t s flag on the command line or in a SQLJ
properties file.

Set it on the command line as follows:

- P- Qopt par andef aul t s=dat at ypel(si zel), dat at ype2(si ze2), . ..

All sizes are in bytes. Do not include any white space. Use empty parentheses for a
null setting.

For example, the following will set sizes of 30 bytes for VARCHAR2 and 1000 bytes
for RAWand will specify a null size setting for CHAR. So for any host variable
corresponding to the CHAR datatype, if there is no source code hint, then the JDBC
driver is left to allocate the resources.

- P- Gopt par andef aul t s=VARCHAR2(30) , RAW 1000) , GHAR()

The opt par andef aul t s option recognizes the following datatype names:

Profiles and Customization 10-29

Customization Options and Choosing a Customizer

CHAR

VARCHAR, VARCHAR2 (synonymous)

L ONG, LONGVARCHAR (synonymous)

Bl NARY, RAW(synonymous)

VARBI NARY

L ONGVARBI NARY, L ONGRAW(synonymous)

The opt par andef aul t s option also recognizes group names and wildcards, as
follows:

CHAR_TYPE covers CHAR, VARCHAR/VARCHAR2, and LONG/L ONGVARCHAR.
RAW TYPE covers Bl NARY/RAWVARBI NARY, and LONGVARBI NARY/ LONGRAW

%by itself covers all recognized datatypes, or, appended to a partial name,
covers a subset of datatypes. For example, VAR%includes all datatypes that start
with "VAR".

The opt par andef aul t s setting is processed from left to right. When using group
names or wildcards, you can override a group setting for particular datatypes.

The following example sets a general default size of 50 bytes, overrides that with a
setting of 500 bytes for raw types, then overrides the raw type group setting with a
null setting for VARBI NARY (leaving that to JDBC for corresponding host variables
with no source code hints):

- P- Gopt par andef aul t s=%450) , RAW TYPE(500) , VARBI NARY()

Following is a command-line example, including the opt par ans setting as well:

sqlj <...SQ@J options...> -P-Coptparans - P-Qopt par andef aul t s=CHAR TYPE 50) , RAW TYPE(500) , CHAR(10) M/App. sql j

Or you can specify parameter size defaults for a previously existing profile (in
which case you must also use the Oracle customizer f or ce option to force a
recustomization):

sqglj -P-Cforce -P-Coptparans - P-Copt par andef aul t s=CHAR TYPEH 50) , RAW TYPE(500) , CHAR(10) M/App_SJProf i | e*. ser

Or you can specify parameter size defaults for previously existing profilesina. j ar

file:

sqglj -P-Cforce -P-Coptparans - P-Copt par andef aul t s=CHAR TYPH 50) , RAW TYPE(500) , CHAR(10) M/AppProfiles.jar

10-30 SQLJ Developer’s Guide and Reference

Customization Options and Choosing a Customizer

Note: If at runtime the actual size exceeds the registered size of
any parameter, runtime errors will occur.

Command-line syntax - P- Copt par andef aul t s=defaul t s-string

Command-line example - P- Copt par andef aul t s=VARY 50) , LON@/4 500) , RAW TYPK()
Properties file syntax profil e. Copt par andef aul t s=def aul t s-stri ng

Properties file example profil e. Copt par antef aul t s=VAR®50) , LON@4500) , RAWTYPE()

Default value null

Oracle Customizer Show-SQL Option (showSQL)

Use the showSQL flag to display any SQL statement transformations performed by
the Oracle customizer. Such transformations are necessary in cases where SQLJ
supports syntax that Oracle8i does not.

To show SQL transformations when translating and customizing the application
My App:
sqlj <...S8QJ options...> -P-GhowSQ MApp. sql j

In this example, the My App profiles will be created and customized and their SQL
transformations displayed in a single running of SQLJ.

To show SQL transformations when customizing My App profiles previously created:
sqlj <...S8@QJ options...> -P-GhowSQL M/App_SIProfil e*. ser

In this example, the My App profiles were created (and possibly customized) in a
previous running of SQLJ and will be customized (if needed) and have their SQL
transformations displayed in the above running of SQLJ.

The showSQL output might include an entry such as this:
MApp. sql j:14: Info: <<<NEWSQ@>>> #sql {BEAN ? := VALUES(tkjsSET f1); ENO};

infile MApp, line 14, we had:

#sgl {set :vl= VALUES(tkjsSET f1) };

Profiles and Customization 10-31

Customization Options and Choosing a Customizer

SQLJ supports the SET statement, but Oracle8i does not. During customization, the
Oracle customizer replaces the SET statement with an equivalent PL/SQL block.

Note: If customization does not take place because a valid
previous customization is detected, the showSQL option shows
SQL transformations regardless.

Command-line syntax - P- GshowSQ.<=t rue/f al se>
Command-line example - P- GshowSQL

Properties file syntax profil e. CshowSQ.<=t rue/ fal se>
Properties file example profil e. GGhowsQ@

Default value fal se

Oracle Customizer Statement Cache Size Option (stmtcache)

Use the Oracle customizer st nt cache option to set the statement cache size—the
number of statements that can be cached for each database connection when your
application is run—or to disable statement caching.

The default statement cache size is 5. For an overview of statement caching, see
"Statement Caching" on page A-3.

You can set the statement cache size on the command line or in a properties file.

To use the command line to set the statement cache size to 15 (for example) for the
application MyApp:
sqlj <...S8Q@J options...>-P-Gtntcache=15 M/App. sql j

To disable statement caching, set the cache size to 0O:
sqlj <...8QJ options...> -P-GCstnicache=0 M/App. sql j
You can also alter the statement cache size in an existing profile, without

re-translating the application (but you must also use the Oracle customizer f or ce
option to force a recustomization):

sqlj -P-Cforce -P-Gstmtcache=15 MApp_SIProfil e0. ser

10-32 SQLJ Developer’s Guide and Reference

Customization Options and Choosing a Customizer

If you have multiple profiles, you can set their statement cache sizes individually by
running SQLJ separately for each profile, after you have translated your application:

sqlj -P-Cforce -P-Gstmtcache=10 M/App_SIProfil e0. ser
sqlj -P-Cforce -P-Gstmtcache=15 MApp_SIProfil el. ser
sqlj -P-Cforce -P-Gstmtcache=0 M/App_SIProfil e2. ser

Of course, you must determine which profile corresponds to each of your
connection context classes. This is determined as follows: Profile 0 will correspond
to the connection context class used for the first executable statement in your
application; Profile 1 will correspond to the connection context class used for the
first executable statement that does not use the first connection context class, and so
on. You can verify the correlation by using the customizer harness pri nt option to
examine each profile.

Command-line syntax - P- Gst nt cache=val ue
Command-line example - P- Gst nt cache=10
Properties file syntax profil e. Gst mcache=val ue
Properties file example profil e. Gst ntcache=10

Default value 5

Oracle Customizer Summary Option (Ssummary)

Use the summar y flag to instruct the Oracle customizer to display a summary of
Oracle features used in an application being translated, or in specified profile files.
This is useful in identifying features that would prevent portability to other
platforms and can be accomplished either during a full SQLJ translation run or on
profiles previously created.

To see summary output when translating and customizing the application My App:
sqlj <...8QJ options...>-P-Gumrary M/App. sql j

In this example, the My App profiles will be created, customized, and summarized in
a single running of SQLJ.

To see summary output for My App profiles previously created:

sqlj <...S8@QJ options...>-P-Gumary M/App_SIProfil e*. ser

Profiles and Customization 10-33

Customization Options and Choosing a Customizer

In this example, the My App profiles were created (and possibly customized) in a
previous running of SQLJ and will be customized (if needed) and summarized in
the above running of SQLJ.

Following are two samples resulting from a - P- Csummar y setting when using the
default Oracle customizer. The first example indicates that no Oracle features are
used:

MApp_SIProfile0.ser: Info: Gacle features used:
M/App_SIProfile0.ser: Info: * none

This second example indicates that Oracle features are used—namely, several Oracle
extended datatypes from the or acl e. sql package—and lists them:

MApp_SIProfile0.ser: Info: Gacle features used:
M/App_SIProfile0.ser: Info: * oracle.sq . NMER 2
MApp_SIProfile0.ser: Info: * oracle.sql .DATE 2
MApp_SIProfile0.ser: Info: * oracle.sq .CHAR 2
MApp_SIProfile0.ser: Info: * oracle.sq . RAW 2

Note: If customization does not take place because a valid
previous customization is detected, the summar y option produces a
summary regardless.

Command-line syntax - P- Csunmar y<=t rue/f al se>
Command-line example - P- Gsunmary

Properties file syntax profil e. Gsunmary<=t r ue/ f al se>
Properties file example profil e. Gunmary

Default value fal se

SQLJ Options for Profile Customization

The following SQLJ options relate to profile customization and are described
elsewhere in this manual:

« -default-custonm zer —Specify the default profile customizer to use if none
is specified in the customizer harness - cust omi zer option.

10-34 SQLJ Developer’s Guide and Reference

Customization Options and Choosing a Customizer

See "Default Profile Customizer (-default-customizer)" on page 8-71.
« - profil e—Specify whether to customize during this running of SQLJ.

See "Profile Customization Flag (-profile)" on page 8-54.

Profiles and Customization 10-35

Use of JAR Files for Profiles

Use of JAR Files for Profiles

As discussed previously, you can specify a . j ar file on the SQLJ command line in
to customize any profiles that the . j ar file contains.

Notes:

« Remember that you can specify . sql j and/or. j ava files on
the SQLJ command line for normal SQLJ processing, or you can
specify . ser and/or . j ar files on the command line for
customization only, but not both.

« Itis permissible for the . j ar file to contain files that are not
profiles. Any file whose manifest entry indicates that the file is
not a profile will be ignored during customization.

« The.jar fileisused as the class-loading context for each
profile it contains. If a profile contains a reference to a class
contained within the . j ar file, then that class is loaded from
the . j ar file. If a profile contains a reference to a class not in
the . j ar file, then the system class loader will find and load
the class according to your CLASSPATH, as usual.

JAR File Requirements

When using a . j ar file for profiles, the manifest entry for each profile must contain
the line:

SQJIProfile: TRE
Accomplish this by: 1) creating a plain text